Взаимно простые числа - это числа, у которых нет общих делителей, кроме единицы.
Числа 720 и 612 - чётные, поэтому они не взаимно простые (на простые множители можно не раскладывать).
720 | 2 612 | 2
360 | 2 306 | 2
180 | 2 153 | 3
90 | 2 51 | 3
45 | 3 17 | 17
15 | 3 1
5 | 5 612 = 2² · 3² · 17
1
720 = 2⁴ · 3² · 5
НОД (720 и 612) = 2² · 3² = 36 - наибольший общий делитель
ответ: числа 720 и 612 не взаимно простые, так как у них есть общие делители, отличные от единицы.
Примем скорость первого автомобиля за х, второго х - 30.
Расстояние от точки встречи (пусть это точка С) до В в соответствии с заданием при t=1 час равно х.
Расстояние между городами равно сумме двух отрезков:
АС = 225 - х,
СВ = х.
По заданию время движения до точки встречи одинаково для двух автомобилей.
(225 - х)/х = х/(х - 30).
х² = 225х - х² -6750 - 30х.
2х² - 195х + 6750 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-255)^2-4*2*6750=65025-4*2*6750=65025-8*6750=65025-54000=11025;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√11025-(-255))/(2*2)=(105-(-255))/(2*2)=(105+255)/(2*2)=360/(2*2)=360/4=90;
x_2=(-√11025-(-255))/(2*2)=(-105-(-255))/(2*2)=(-105+255)/(2*2)=150/(2*2)=150/4=37,5.
В соответствии с заданием ответ: скорость автомобиля, выехавшего из А равна 90 км/час.
Взаимно простые числа - это числа, у которых нет общих делителей, кроме единицы.
Числа 720 и 612 - чётные, поэтому они не взаимно простые (на простые множители можно не раскладывать).
720 | 2 612 | 2
360 | 2 306 | 2
180 | 2 153 | 3
90 | 2 51 | 3
45 | 3 17 | 17
15 | 3 1
5 | 5 612 = 2² · 3² · 17
1
720 = 2⁴ · 3² · 5
НОД (720 и 612) = 2² · 3² = 36 - наибольший общий делитель
ответ: числа 720 и 612 не взаимно простые, так как у них есть общие делители, отличные от единицы.
Примем скорость первого автомобиля за х, второго х - 30.
Расстояние от точки встречи (пусть это точка С) до В в соответствии с заданием при t=1 час равно х.
Расстояние между городами равно сумме двух отрезков:
АС = 225 - х,
СВ = х.
По заданию время движения до точки встречи одинаково для двух автомобилей.
(225 - х)/х = х/(х - 30).
х² = 225х - х² -6750 - 30х.
2х² - 195х + 6750 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-255)^2-4*2*6750=65025-4*2*6750=65025-8*6750=65025-54000=11025;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√11025-(-255))/(2*2)=(105-(-255))/(2*2)=(105+255)/(2*2)=360/(2*2)=360/4=90;
x_2=(-√11025-(-255))/(2*2)=(-105-(-255))/(2*2)=(-105+255)/(2*2)=150/(2*2)=150/4=37,5.
В соответствии с заданием ответ: скорость автомобиля, выехавшего из А равна 90 км/час.