На класе необходимо купить 30 рабочих тетрадей по .в таблице даны цены и условия доставки всего заказа целиком в трёхerreprer-maraannax.интернет-магазинцена рабочейтетради(руб., за шт.)стоимостьдоставки(руб.)дополнительные условия90500 мнет101400доставка бесплатная, если суммазаказа превышает 2500 руб.82600доставка бесплатная, если суммазаказа превышает 3000 руб.во сколько обойдётся наиболее дешёвый вариант покупки с доставкой? запишите решение и ответ.решение: надо
ответ:11
Пошаговое объяснение:
Пронумеруем учеников по кругу начиная от тог0, кто сказал 6. Итак а1 — 6; а2 — 10; а3 — 14; а4 — 18; а5 — 22; а6 — 26; а7 — 30; а8 — 34; а9 — 38; а10 — 42. Найдем какое число сказал а10. Очевидно, что это число знали а1 и а9. Сложим числа которые они сказали: это значит, что мы в результате получили сумму чисел задуманных учениками: а10 — два числа, а также а2 и а8 — по одному числу. Теперь нужно отнять числа задуманные а2 и а8, Их в сумме также назвали ученики а3 и а7, но мы вместе отняли и числа задуманные учениками а4 и а6, а эти числа в сумме назвал ученик а5, Поэтому прибавим их назад. В результате получим число в два раза большее чем задумал а10. Разделим его пополам. Получим (38+6-14-30+22):2=11. ответ: ученик, который назвал число 42, задумал число 11.
Пошаговое объяснение:
Общее уравнение прямой в пространстве ax + by + cz + d = 0, где a,b,c, d -- числа.
Через любые две точки можно построить прямую и притом только одну. Допустим, что через точки A и B проходит прямая. Найдем ее уравнение: для этого подставим координаты в общее уравнение и найдем коэффициенты.
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*0 + c*0 + d = 0
a + d = 0
Подставляем в уравнение координаты точки и(1,2,2):
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*2 + c*2 + d = 0
a + 2b + 2c + d = 0
Объединим 2 полученных уравнения в систему и решим ее:
Пусть a = 1, b = 1, тогда d = -1, c = -1. Получаем уравнение прямой, проходящей через точки A и B:
1*x + 1*y -1*z - 1 = 0
x + y - z - 1 = 0.
Если точка C, лежит на одной прямой с точками A и B, то ее координаты должны удовлетворять полученному уравнению прямой. Проверим:
2 + 2 - 2 - 1 ≠ 0 ⇒ C не лежит на одной прямой с точками A и B