Пошаговое объяснение:
найдем точку пересечения прямых. для этого решим систему уравнений
из первого выразим х х= 2у-3
подставим во второе 2(2у-3)+у+5=0; 4у -6 +у +5 =0; 5у=1; у=0,2
тогда х = 2*0,2 -3 = 0,4 -3 = -2,6
это наша точка пересечения М(-2,6; 0,2)
теперь уравнение прямой, параллельной оси оу
направляющий вектор оси оу s=(0;1), можем его использовать в качестве направляющего вектора искомой прямой, т.к. они параллельны
тогда каконическое уравнение прямой, проходяшей через точку М(-2,6; 0,2) параллельно оси оу будет
перейдем к обшему виду и получим
х = -2,6
1)По определению
arccos a=α, если сos α=a и -1≤а≤1, угол 0≤α≤π При этом выполняется равенство
arccos(cosα)=α
Обозначим
сos 6π/5=a, угол 6π/5 находится в третьей четверти, косинус в третьей четверти имеет знак минус, поэтому заменим его углом во второй четверти.
6π/5=(5π+π)/5=π + (π/5)
возьмем α=π-(π/5)=4π/5
сos (6π/5)=cоs(4π/5)=а
arrcos (cos 6π/5)=arccos (a)=4π/5 и 0≤4π/5≤π
2) по определению arcsinα=a, -1≤a≤1 и -π/2≤α≤π/2 При этом выполняется равенство:
arcsin( sinα)=α
сos π/9=a,
cosπ/9= sin (π/2-π/9)=sin (7π/18)=a
arcsin(sin(7π/18)=7π/18 угол 7π/18 удовлетворяет условию -π/2≤7π/18≤π/2
ответ. 1) 4π/5 2) 7π/18
Пошаговое объяснение:
найдем точку пересечения прямых. для этого решим систему уравнений
из первого выразим х х= 2у-3
подставим во второе 2(2у-3)+у+5=0; 4у -6 +у +5 =0; 5у=1; у=0,2
тогда х = 2*0,2 -3 = 0,4 -3 = -2,6
это наша точка пересечения М(-2,6; 0,2)
теперь уравнение прямой, параллельной оси оу
направляющий вектор оси оу s=(0;1), можем его использовать в качестве направляющего вектора искомой прямой, т.к. они параллельны
тогда каконическое уравнение прямой, проходяшей через точку М(-2,6; 0,2) параллельно оси оу будет
перейдем к обшему виду и получим
х = -2,6
1)По определению
arccos a=α, если сos α=a и -1≤а≤1, угол 0≤α≤π При этом выполняется равенство
arccos(cosα)=α
Обозначим
сos 6π/5=a, угол 6π/5 находится в третьей четверти, косинус в третьей четверти имеет знак минус, поэтому заменим его углом во второй четверти.
6π/5=(5π+π)/5=π + (π/5)
возьмем α=π-(π/5)=4π/5
сos (6π/5)=cоs(4π/5)=а
arrcos (cos 6π/5)=arccos (a)=4π/5 и 0≤4π/5≤π
2) по определению arcsinα=a, -1≤a≤1 и -π/2≤α≤π/2 При этом выполняется равенство:
arcsin( sinα)=α
сos π/9=a,
cosπ/9= sin (π/2-π/9)=sin (7π/18)=a
arcsin(sin(7π/18)=7π/18 угол 7π/18 удовлетворяет условию -π/2≤7π/18≤π/2
ответ. 1) 4π/5 2) 7π/18