На доске были написаны 12 последовательных натуральных чисел. когда стёрли одно из них, то сумма одиннадцати оставшихся оказалась равна 2019. какое число стёрли с доски?
Sn = (a1+an)•n/2 - сумма арифметической прогрессии, где а1 - первый член, n - количество членов. an = a1 + d(n - 1), где а d - разность. d =1 , поскольку числа натуральные. По условию n = 12-1 = 11 S11 = 2019
an = ak + d(n - k) - формула нахождения n-го члена арифметической прогрессии через k-ый член прогрессии: аk = an - d(n-k) ak = an - 12 + k an = a1 + d(n - 1) an = a1 +11 Следовательно аk = a1 + 11 - 12 + k ak = a1 -1 + k
Sn = (a1+an)•n/2
2019 + ak = (a1 + an) •12/2 a1 - 1 + k = 6(a1 + a1 + 11) - 2019 a1 - 1 + k = 12a1 + 66 - 2019 11a1 = 2019 - 66 - 1 + k 11a1 = 1952 + k Можно подобрать числа. a1 = 178 k = 6 , 6-й член это число 183.
an = a1 + d(n - 1), где а d - разность.
d =1 , поскольку числа натуральные.
По условию n = 12-1 = 11
S11 = 2019
an = ak + d(n - k) - формула нахождения n-го члена арифметической прогрессии через k-ый член прогрессии:
аk = an - d(n-k)
ak = an - 12 + k
an = a1 + d(n - 1)
an = a1 +11
Следовательно
аk = a1 + 11 - 12 + k
ak = a1 -1 + k
Sn = (a1+an)•n/2
2019 + ak = (a1 + an) •12/2
a1 - 1 + k = 6(a1 + a1 + 11) - 2019
a1 - 1 + k = 12a1 + 66 - 2019
11a1 = 2019 - 66 - 1 + k
11a1 = 1952 + k
Можно подобрать числа.
a1 = 178
k = 6 , 6-й член это число 183.
ответ: 183.