3400 | 2 4100 | 2
1700 | 2 2050 | 2
850 | 2 1025 | 5
425 | 5 205 | 5
85 | 5 41 | 41
17 | 17 1
1 4100 = 2² · 5² · 41
3400 = 2³ · 5² · 17
НОК = 2³ · 5² · 17 · 41 = 139400 - наименьшее общее кратное
139400 : 3400 = 41 - доп. множ. к дроби со знаменателем 3400
139400 : 4100 = 34 - доп. множ. к дроби со знаменателем 4100
ответ: 139400 наименьший знаменатель.
1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49
3400 | 2 4100 | 2
1700 | 2 2050 | 2
850 | 2 1025 | 5
425 | 5 205 | 5
85 | 5 41 | 41
17 | 17 1
1 4100 = 2² · 5² · 41
3400 = 2³ · 5² · 17
НОК = 2³ · 5² · 17 · 41 = 139400 - наименьшее общее кратное
139400 : 3400 = 41 - доп. множ. к дроби со знаменателем 3400
139400 : 4100 = 34 - доп. множ. к дроби со знаменателем 4100
ответ: 139400 наименьший знаменатель.
1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
- + -
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49