мотоциклист выехал из города в деревню. до остановки он проехал третью часть пути и ещё 10 км. в результате он проехал половину всего пути. сколько километров от города до деревни?
Предположим, что существует натуральное число b такое, что b⁴=5a⁴+13 (знак b значения не имеет, поэтому достаточно доказать, что таких натуральных чисел нет). Тогда число b можно записать как 5n+r, где r - остаток от деления числа b на 5. Получаем равенство (5n+r)⁴=5a⁴+13. Заметим, что правая часть имеет остаток 3 при делении на 5, а значит, число b⁴ имеет остаток 3 при делении на 5 и r≠0. Выражение (5n+r)⁴ имеет такой же остаток при делении на 5, что и число r⁴ (если мы раскроем скобки, то слагаемое r⁴ окажется единственным, не делящимся на 5). Легко проверить, что при r=1,2,3,4 число r⁴ имеет остаток 1 при делении на 5. Мы получили противоречие, следовательно, такого числа b не существует и число 5a⁴+13 не является четвертой степенью никакого целого числа.
=26325/1802= 14 1097/1802
2)14 1097/1802 * 42 2/5 = (26325*212)/(1802*5) =
=(5265*2)/(17*1)= 10530/17= 619 7/17
3) 619 7/17 * 47 2/9 = (10530*425)/ (17*9) =
=(1170*25)/(1*1)=29250
4) 125/161 * 8 216/617 = ( 125*5152)/(161*617)=
= (125*32)/(1*617) = 4000/617=6 298/617
5) 6 298/617 * 15 17/40 = (4000*617)/(617*40) = 100
6) 100* 22 31/36 = (823*100)/(36*1)=
= (823*25)/(9*1)= 20575/9 = 2286 1/9
7) 29250 - 2286 1/9 = 26963 8/9
ответ: 26963 8/9 .