В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
PechenkO629
PechenkO629
25.10.2021 16:43 •  Математика

Монофон на букву с счастье профессии пекаря

Показать ответ
Ответ:
alikalik3
alikalik3
04.11.2021 15:43

Пошаговое объяснение:

A=\begin{pmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{pmatrix}, \; B=\begin{pmatrix} 1&0&-4\\2&5&-3\\4&-3&2\end{pmatrix}

Здесь я позволю себе подробно расписать получение элементов при умножении матриц, но обычно все расчеты проводят усно и так лучше не шутить:)

а)

BA=\begin{pmatrix} 1&0&-4\\2&5&-3\\4&-3&2\end{pmatrix}*\begin{pmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{pmatrix}=\\\begin{pmatrix}1*1+0*2-4*4&1*1-4*0-4*(-3)&-1*1+0*1-4*1\\2*1+5*2-3*4&2*1-4*5-3*(-3)&-1*2+5*1-3*1\\4*1-3*2+2*4&4*1-3*(-4)-3*2&-1*4-3*1+2*1\end{pmatrix}=\\\begin{pmatrix} -17&13&-5\\0&-9&0\\6&10&-5\end{pmatrix}

б)

AB=\begin{pmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{pmatrix}*\begin{pmatrix} 1&0&-4\\2&5&-3\\4&-3&2\end{pmatrix}=\\\begin{pmatrix}1*1+1*2-1*4&1*0+1*5-1*(-3)&-4*1-3*1-1*2\\2*1-4*2+1*4&2*0-4*5-3*1&-4*2-4*(-3)+1*2\\4*1-3*2+1*4&4*0-3*5-3*1&-4*4-3*(-3)+1*2\end{pmatrix}=\\\begin{pmatrix} -1&8&-9\\-2&-23&6\\2&-18&-5\end{pmatrix}

в) Перед поиском обратной матрицы проверим, существует ли она вообще. Поскольку обратные существуют только для невырожденных матриц, рассчитаем определитель и выясним, равен ли он нулю.

\det A=\begin{vmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{vmatrix} =\begin{vmatrix} 1&1&-1\\0&-6&3\\4&-3&1\end{vmatrix} =\begin{vmatrix} 1&1&-1\\0&-6&3\\0&-7&5\end{vmatrix} =\\\begin{vmatrix} -6&3\\-7&5\end{vmatrix}=-6*5-(-7)*3=-30+21=-9 \ne 0

Итак, A^-1 существует. Найдем ее. Для начала транспонируем A:

A^T=\begin{pmatrix} 1&2&4\\1&-4&-3\\-1&1&1\end{pmatrix}

Теперь заменим каждый элемент на его минор и умножим полученную матрицу на число, обратное определителю. Я опять-таки сделаю все подробно, но повторять не стоит:)

A^{-1}=\frac{1}{\det A}\begin{pmatrix} -4*1-1*(-3)&-(1*1-(-1)*(-3))& 1*1-(-1)*(-4)\\-(2*1-1*4)& 1*1-(-1)*4&-(1*1-(-1)*2)\\-3*2-(-4)*4&-(-3*1-1*4)&-4*1-1*2\end{pmatrix} =\\-\frac{1}{9} \begin{pmatrix} -1&2&-3\\2&5&-3\\10&7&-6\end{pmatrix}=\frac{1}{9}\begin{pmatrix} 1&-2&3\\-2&-5&3\\-10&-7&6\end{pmatrix}

Если мы сделали все правильно, то после умножения обратной матрицы на A (либо наоборот) получим единичную матрицу. Это как раз и предлагают провернуть в двух последних пунктах.

г)AA^{-1}=\begin{pmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{pmatrix}*\frac{1}{9}\begin{pmatrix} 1&-2&3\\-2&-5&3\\-10&-7&6\end{pmatrix} =\\\frac{1}{9}\begin{pmatrix} 1*1-2*1+(-1)*(-10)&-2*1-5*1+(-1)*(-7)&1*3+1*3-1*6\\2*1+(-4)*(-2)-10*1&-2*2+(-4)*(-5)-7*1&2*3-4*3+1*6\\4*1+(-3)*(-2)-10*1&-2*4+(-3)*(-5)-7*1&4*3-3*3+1*6 \end{pmatrix}=\\\frac{1}{9}\begin{pmatrix} 9&0&0\\0&9&0\\0&0&9\end{pmatrix} =\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1\end{pmatrix}=Eд)A^{-1}A=\frac{1}{9} \begin{pmatrix} 1&-2&3\\-2&-5&3\\-10&-7&6\end{pmatrix}*\begin{pmatrix} 1&1&-1\\2&-4&1\\4&-3&1\end{pmatrix}=\\\frac{1}{9}\begin{pmatrix} 1*1-2*2+3*4&1*1+(-2)*(-4)-3*3&-1*1-2*1+3*1\\-2*1-5*2+3*4&-2*1+(-5)*(-4)-3*3&-2*(-1)-5*1+3*1\\-10*1-7*2+6*4&-10*1+(-7)*(-4)-3*6&-10*(-1)-7*1+6*1\end{pmatrix} =\\\frac{1}{9}\begin{pmatrix} 9&0&0\\0&9&0\\0&0&9\end{pmatrix} =\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1\end{pmatrix}=E

0,0(0 оценок)
Ответ:
koc12
koc12
17.10.2021 00:46
Необходимое условие экстремума функции одной переменной.

Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной.

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:

f'0(x*) = 0

f''0(x*) > 0

то точка x* является точкой локального (глобального) минимума функции.

Если в точке x* выполняется условие:

f'0(x*) = 0

f''0(x*) < 0

то точка x* - локальный (глобальный) максимум.  

Находим первую производную функции:

y' = -x2+6

Приравниваем ее к нулю:

-x^2+6 = 0

-x^2=-6

x^2=6

x1,2=+/-√6

Вычисляем значения функции:

f(-√6)=-4√6+7

f(√6)=7+4√6

Нам нужно fmax:

fmax=7+4√6

Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:

y'' = -2·x

Вычисляем:

y''=(√6)=-2√6<0

Значит это точка максимума функции.ответ:√6
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота