О некотором трёхзначном числе известно, что число его десятков на 3 больше числа сотен. Пусть число сотен этого числа - х, тогда число десятков - х+3. Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3). Тогда исходное число М=100х+10(х+3)+30/(х+3) Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х Т.к. новое число превышает исходное число на 396, то имеем 1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396 3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3 3000+х²+3х-100х²-300х-30-396х-1188=0 -99х²-396х+1782=0 х²+7х-18=0 х₁*х₂=-18 х₁+х₂=-7 х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами. М=100*2+10*5+30/5=256, √М=√256=16 ответ: 16
1) - 6 2/3 - 8,75 = - 20/3 - 8 3/4 = - 20/3 - 35/4 = - (80/12 + 105/12) = - 185/12 = - 15 5/12
2) - 3 7/15 + 0,4 - 6 1/3 = - 3 7/15 + 2/5 - 6 1/3 = - 52/15 + 2/5 - 19/3 = - 52/15 + 6/15 - 95/15 = - 1/15 * ( 52 - 6 + 95) = - 1/15 * 151 = - 151/15 = - 10 1/15
3)-1,5 - 3 4/5 - 8 3/20 = - 1 1/2 - 3 4/5 - 8 3/20 = - 3/2 - 19/5 - 163/20 = - 30/20 - 76/20 - 163/20 = - 1/20 * (30 + 76 + 163) = - 1/20 * 269 = - 269/20 = -13 9/20
4) - 2 5/8 - 9,25 - 3/4 = - 2,625 - 9,25 - 0,75 = - (2,625 + 9,25 + 0,75) = - 12,625 = 12 5/8
Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3).
Тогда исходное число М=100х+10(х+3)+30/(х+3)
Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х
Т.к. новое число превышает исходное число на 396, то имеем
1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396
3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3
3000+х²+3х-100х²-300х-30-396х-1188=0
-99х²-396х+1782=0
х²+7х-18=0
х₁*х₂=-18
х₁+х₂=-7
х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами.
М=100*2+10*5+30/5=256, √М=√256=16
ответ: 16