Множество Ф состоит из точек, координаты которых (x,y) в прямоугольной системе координат удовлетворяет соотношению y=|y-2x^2|. При каких значениях a прямая y-3x=a будет иметь ровно 3 общие точки с множеством Ф?
Этапы решения Разложим числа на множители. Для этого проверим, является ли каждое из чисел если число то его нельзя разложить на множители, и оно само является своим разложением)
27 - составное число
26 - составное число
Разложим число 27 на множители и выделим их зелены цветом. Начинаем подбирать делитель из чисел, начиная с самого маленького числа 2, до тех пор, пока частное не окажется числом
27 : 3 = 9 - делится на число 3
9 : 3 = 3 - делится на число 3.
Завершаем деление, так как число
Разложим число 26 на множители и выделим их зелены цветом. Начинаем подбирать делитель из чисел, начиная с самого маленького числа 2, до тех пор, пока частное не окажется числом
26 : 2 = 13 - делится на число 2.
Завершаем деление, так как число
2) Прежде всего запишем множители самого большого числа, а затем меньшего числа. Найдем недостающие множители, выделим синим цветом в разложении меньшего числа множители, которые не вошли в разложение большего числа.
27 = 3 ∙ 3 ∙ 3
26 = 2 ∙ 13
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
НОК Найдем все возможные кратные чисел (27 ; 26). Для этого поочередно умножим число 27 на числа от 1 до 26, число 26 на числа от 1 до 27.
Из Москвы в 8 часов утра отправился поезд со скоростью 58 км/ч. В 11ч. утра вслед за ним отправился другой поезд со скоростью 64 км/ч. На каком
расстоянии эти поезда будут друг от друга в 3 ч. дня ?
Решение задачи поэтапно:
1 этап)Объяснение
3 часа дня значит 15 часов
2 этап)Решение
1) 15 - 8 = 7 (ч) - время в пути первого поезда;
2) 58 * 7 = 406 (км) - проедет первый поезд за 7 часов;
3) 15 - 11 = 4 (ч) - время в пути второго поезда;
4) 64 * 4 = 256 (км) - проедет второй поезд за 4 часа;
5) 406 - 256 = 150 (км) - расстояние между поездами в 3 часа дня.
Окончательный ответ: 150 км.
Наименьшее общее кратное НОК (27 ; 26) = 702
Этапы решения Разложим числа на множители. Для этого проверим, является ли каждое из чисел если число то его нельзя разложить на множители, и оно само является своим разложением)
27 - составное число
26 - составное число
Разложим число 27 на множители и выделим их зелены цветом. Начинаем подбирать делитель из чисел, начиная с самого маленького числа 2, до тех пор, пока частное не окажется числом
27 : 3 = 9 - делится на число 3
9 : 3 = 3 - делится на число 3.
Завершаем деление, так как число
Разложим число 26 на множители и выделим их зелены цветом. Начинаем подбирать делитель из чисел, начиная с самого маленького числа 2, до тех пор, пока частное не окажется числом
26 : 2 = 13 - делится на число 2.
Завершаем деление, так как число
2) Прежде всего запишем множители самого большого числа, а затем меньшего числа. Найдем недостающие множители, выделим синим цветом в разложении меньшего числа множители, которые не вошли в разложение большего числа.
27 = 3 ∙ 3 ∙ 3
26 = 2 ∙ 13
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
НОК Найдем все возможные кратные чисел (27 ; 26). Для этого поочередно умножим число 27 на числа от 1 до 26, число 26 на числа от 1 до 27.
Выделим все кратные числа 27 зеленым цветом:
27 ∙ 1 = 27; 27 ∙ 2 = 54; 27 ∙ 3 = 81; 27 ∙ 4 = 108;
27 ∙ 5 = 135; 27 ∙ 6 = 162; 27 ∙ 7 = 189; 27 ∙ 8 = 216;
27 ∙ 9 = 243; 27 ∙ 10 = 270; 27 ∙ 11 = 297; 27 ∙ 12 = 324;
27 ∙ 13 = 351; 27 ∙ 14 = 378; 27 ∙ 15 = 405; 27 ∙ 16 = 432;
27 ∙ 17 = 459; 27 ∙ 18 = 486; 27 ∙ 19 = 513; 27 ∙ 20 = 540;
27 ∙ 21 = 567; 27 ∙ 22 = 594; 27 ∙ 23 = 621; 27 ∙ 24 = 648;
27 ∙ 25 = 675; 27 ∙ 26 = 702;
Выделим все кратные числа 26 зеленым цветом:
26 ∙ 1 = 26; 26 ∙ 2 = 52; 26 ∙ 3 = 78; 26 ∙ 4 = 104;
26 ∙ 5 = 130; 26 ∙ 6 = 156; 26 ∙ 7 = 182; 26 ∙ 8 = 208;
26 ∙ 9 = 234; 26 ∙ 10 = 260; 26 ∙ 11 = 286; 26 ∙ 12 = 312;
26 ∙ 13 = 338; 26 ∙ 14 = 364; 26 ∙ 15 = 390; 26 ∙ 16 = 416;
26 ∙ 17 = 442; 26 ∙ 18 = 468; 26 ∙ 19 = 494; 26 ∙ 20 = 520;
26 ∙ 21 = 546; 26 ∙ 22 = 572; 26 ∙ 23 = 598; 26 ∙ 24 = 624;
26 ∙ 25 = 650; 26 ∙ 26 = 676; 26 ∙ 27 = 702;
2) Выпишем все общие кратные чисел (27 ; 26) и выделим зеленым цветом самое маленькое, это и будет наименьшим общим кратным чисел (27 ; 26).
Общие кратные чисел (27 ; 26): 702
ответ: НОК (27 ; 26) = 702