Мистер фокс нарисовал параболу y=x2y=x2 и отметил на ней четыре точки kk, ll, mm и nn. оказалось, что точки выбраны им так, что прямые klkl и mnmn пересеклись на оси ординат. чему равна абсцисса точки nn, если абсциссы точек kk, ll и mm соответственно равны 7, 2 и 10?
К(7; 49), L(2; 4), M(10, 100).
Уравнение прямой KL:
Сократим знаменатели на -5 и приведём к общему знаменателю:
9х-63 = у-49,
9х-у-14 = 0 или у = 9х-14.
Эта прямая пересекает ось ординат в точке -14.
Коэффициент наклона прямой MN равен (100+14)/10 = 114/10 = 11,4.
Получаем уравнение прямой MN: y = 11,4x-14.
Теперь находим точку N на параболе как точку пересечения параболы у=х² и прямой у=11,4х-14.
х² = 11,4х-14.
Получаем квадратное уравнение х²-11,4х+14 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-11.4)^2-4*1*14=129.96-4*14=129.96-56=73.96;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√73.96-(-11.4))/(2*1)=(8.6-(-11.4))/2=(8.6+11.4)/2=20/2=10 (это точка М)(;x₂=(-√73.96-(-11.4))/(2*1)=(-8.6-(-11.4))/2=(-8.6+11.4)/2=2.8/2=1,4.
ответ: абсцисса точки N равна 1,4.