О некотором трёхзначном числе известно, что число его десятков на 3 больше числа сотен. Пусть число сотен этого числа - х, тогда число десятков - х+3. Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3). Тогда исходное число М=100х+10(х+3)+30/(х+3) Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х Т.к. новое число превышает исходное число на 396, то имеем 1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396 3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3 3000+х²+3х-100х²-300х-30-396х-1188=0 -99х²-396х+1782=0 х²+7х-18=0 х₁*х₂=-18 х₁+х₂=-7 х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами. М=100*2+10*5+30/5=256, √М=√256=16 ответ: 16
Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3).
Тогда исходное число М=100х+10(х+3)+30/(х+3)
Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х
Т.к. новое число превышает исходное число на 396, то имеем
1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396
3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3
3000+х²+3х-100х²-300х-30-396х-1188=0
-99х²-396х+1782=0
х²+7х-18=0
х₁*х₂=-18
х₁+х₂=-7
х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами.
М=100*2+10*5+30/5=256, √М=√256=16
ответ: 16
приведем к общему знаменателю 77
получится = 33:77 и 21/77
б) 7:25 ≤ 7:24
приведем к общему знаменателю 600
получится = 168:600 и 175:600
в) 4:31 ≥ 4:32
приведем к общему знаменателю 992
получится 128:992 и 124:992
г) 10:40≥10:50
приведем к общему знаменателю 2000
получится 500:2000 и 400: 2000
2. а) 1:2 ≤ 2:3
приведем к общему знаменателю 6
получится 3:6 и 4:6
б) 6:7≥5:6
приведем к общему знаменателю 42
получится 36:42 и 35:42
в) 9:10≤10:11
приведем к общему знаменателю 110
получится 99:110 и 100:110
г) 20:21≤21:22
приведем к общему знаменателю 462
получится 440:462 и 441:462