Пошаговое объяснение:Найдем площадь основания параллелепипеда S=аbsin60°=2·2·√3/2=2√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
№1
Дано:
∆АВС – равносторонний,
SC=12,
AB=4,
Углы SCA и SCB – прямые.
Найти: SA, SB
Так как ∆ABC – равносторонний по условию, то АС=ВС=АВ=4.
Углы SCA и SCB – прямые по условию, тогда ∆SCA u ∆SCB – прямоугольные.
По теореме Пифагора в ∆SCA:
SA²=SC²+AC²
SA²=12²+4²
По теореме Пифагора в ∆SCB:
SB²=SC²+BC²
SB²=12²+4²
ответ: 4√10.
№2
Дано:
∆АВС – равнобедренный с основанием CD (не равносторонний так как CE≠CD),
CE=ED=10 см,
CD=16 см,
SE=2 см,
Угол SEO=90°,
ЕО – высота ∆АВС.
Найти: SO
Высота равнобедренного треугольника, проведенная к основанию, так же является медианой.
Следовательно ЕО – медиана, значит CO=DO=0,5CD=16*0,5=8 см.
Так как ЕО – высота, то угол ЕОС=90°, тогда ∆ЕОС – прямоугольный.
В ∆ЕОС по теореме Пифагора:
ЕС²=СО²+ЕО²
10²=8²+ЕО²
ЕО²=100–64
ЕО=√36
ЕО=6 см
Так как угол SEO=90° по условию, то ∆SEO – прямоугольный.
В ∆SEO по теореме Пифагора:
SO²=SE²+EO²
SO²=2²+6²
SO²=4+36
SO=√40
SO=2√10 см.
ответ: 2√10 см.
ответ:4√3дм^3 або 4000√3 см^3
Пошаговое объяснение:Найдем площадь основания параллелепипеда S=аbsin60°=2·2·√3/2=2√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
V=Sh=2·2√3=4√3 cм³.
ответ: 4√3 см³.