Масса земли 6,2 ∙ 10 в 24 степени кг. масса солнца в 333 000 раз превышает массу земли. рассчитайте солнечную массу! ответ превращается в нормальную форму!
Дано: 1, 2, 1000 - ряд натуральных чисел от 1 до 1000 2, 4, 6, 1000 - ряд чётных чисел. сумма данного ряда равна а. 1, 3, 5, 999 - ряд нечётных чисел. сумма данного ряда равна b. найти: b-a решение: а=2+4+6++1000 сумму данного ряда найдём с формулы суммы арифметической прогрессии. а₁=2, а₂=4 => d=a₂-a₁=4-2=2 a(n)=1000 n-? a(n)=a₁+d(n-1) 2+2(n-1)=1000 2(n-1)=998 n-1=499 n=500 s(n)=s(500)=(a₁+a₅₀₀)*500/2=(2+1000)*250=250500 следовательно, а=250500 аналогично, находим b - сумму ряда нечётных чисел: b=1+3+5++999 b₁=1, b₂=3 => d=b₂-b₁=2 b(n)=999 n-? b(n)=b₁+d(n-1) 1+2(n-1)=999 2(n-1)=998 n-1=499 n=500 s(n)=s(₅₀₀)=(b₁+b₅₀₀)*500/2=(1+999)*250=250000 следовательно, b=250000 b-a=250000-250500=-500 ответ: -500
Будем считать, что дано такое уравнение (√5 - 1)/ log(х, 10) = 4lg ( х/√10).
Поменяем ролями основание и аргумент логарифма левой части, а в правой части логарифм дроби заменим разностью логарифмов.
(√5 - 1) * log(10, х) = 4(lоg (10, х) - log(10, 10^(1/2))),
(√5 - 1) * log(10, х) = 4(lоg (10, х) - (1/2)).
(√5 - 1) * log(10, х) = 4lоg (10, х) - 2. Вынесем общий множитель.
(4 - √5 + 1) * log(10,х) = 2. Заменим 2 на log(10, 100).
(5 - √5) * log(10,х) = log(10, 100).
Получаем при равных основаниях:
x^(5 - √5) = 100.
ответ: х = 100^(1/(5 - √5)) ≈ 5,29184. Корень один.