Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
1)дано линейное уравнение: 62/13-x = 37/13 переносим свободные слагаемые (без x) из левой части в правую, получим: -x = -25/13 разделим обе части ур-ния на -1 x = -25/13 / (-1) получим ответ: x = 25/132)дано линейное уравнение: y-58/9 = 35/9 переносим свободные слагаемые (без y) из левой части в правую, получим: y=31/3 получим ответ: y = 31/33)дано линейное уравнение: (x+24/11)-47/11 = 16/11 раскрываем скобочки в левой части ур-ния x+24/11-47/11 = 16/11 приводим подобные слагаемые в левой части ур-ния: -23/11 + x = 16/11 переносим свободные слагаемые (без x) из левой части в правую, получим: x=39/11 получим ответ: x = 39/114)дано линейное уравнение: (x-2)+37/9 = 44/9 раскрываем скобочки в левой части ур-ния x-2+37/9 = 44/9 приводим подобные слагаемые в левой части ур-ния: 19/9 + x = 44/9 переносим свободные слагаемые (без x) из левой части в правую, получим: x=25/9 получим ответ: x = 25/9
I баскетболист
Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: .
II баскетболист
Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово.
Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.