Из треугольника АВС найдем \angle ABC: \angle ABC=180 в степени circ минус \angle A минус \angle C=180 в степени circ минус 40 в степени circ минус 60 в степени circ=80 в степени circ. BD — биссектриса, следовательно, \angle DBC= дробь, числитель — 1, знаменатель — 2 \angle ABC=40 в степени circ. Треугольник HBC — прямоугольный, следовательно: \angle HBC=90 в степени circ минус \angle C=90 в степени circ минус 60 в степени circ=30 в степени circ. Найдём угол DBH: \angle DBH=\angle DBC минус \angle HBC=40 в степени circ минус 30 в степени circ=10 в степени circ.
Пусть ε - сколь угодно малое положительное число. Мы докажем утверждение, если найдём такое число δ>0, если для всех x∈(3-δ; 3+δ) будет выполняться неравенство /(x²-9)/(x²+3*x)-2/<ε. Это неравенство равносильно двойному неравенству 2-ε<(x²-9)/(x²+3*x)<2+ε. Их общим решением является x∈(3/[1+ε];3)∪(3;3/[1-ε]). Так как число 3/(1+ε) "ближе" к 3, чем число 3/(1-ε), то возьмём δ=3-3/(1+ε)=3*ε/(1+ε). Таким образом, число δ найдено, а это и доказывает справедливость равенства.
\angle ABC=180 в степени circ минус \angle A минус \angle C=180 в степени circ минус 40 в степени circ минус 60 в степени circ=80 в степени circ.
BD — биссектриса, следовательно, \angle DBC= дробь, числитель — 1, знаменатель — 2 \angle ABC=40 в степени circ.
Треугольник HBC — прямоугольный, следовательно:
\angle HBC=90 в степени circ минус \angle C=90 в степени circ минус 60 в степени circ=30 в степени circ.
Найдём угол DBH:
\angle DBH=\angle DBC минус \angle HBC=40 в степени circ минус 30 в степени circ=10 в степени circ.
ответ: 10°.
Пошаговое объяснение:
Пусть ε - сколь угодно малое положительное число. Мы докажем утверждение, если найдём такое число δ>0, если для всех x∈(3-δ; 3+δ) будет выполняться неравенство /(x²-9)/(x²+3*x)-2/<ε. Это неравенство равносильно двойному неравенству 2-ε<(x²-9)/(x²+3*x)<2+ε. Их общим решением является x∈(3/[1+ε];3)∪(3;3/[1-ε]). Так как число 3/(1+ε) "ближе" к 3, чем число 3/(1-ε), то возьмём δ=3-3/(1+ε)=3*ε/(1+ε). Таким образом, число δ найдено, а это и доказывает справедливость равенства.