Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
1 см³ - 100 мм³ = 1.000 мм³ - 100 мм³ = 900 мм³ = 0,9 см³
1 дм³ - 200 см³ = 1 дм³ - 0,2 дм³ = 0,8 дм³
100 м² + 2 га = 100 м² + 20.000 м² = 20.100 м²
800 а : 2 = 400 а
1 000 см³ - 1 дм³ = 1.000 см³ - 1.000 см³ = 0 см³
400 м² : 4 = 100 м²
200 дм³ + 100 м³ = 200 дм³ + 100.000 дм³ = 100.200 дм³
10 см³ + 1.000 см³ = 1.010 см³
5 м³ : 100 дм³ = 5.000 дм³ : 100 дм³ = 50 дм³ = 0,05 м³
500 м³ + 100 дм³ = 500.000 дм³ + 100 дм³ = 500.100 дм³ = 500,1 м³
5 м³ + 100 дм³ = 5.000 дм³ + 100 дм³ = 5.100 дм³ = 5,1 м³
50 м² + 100 дм² = 5.000 дм² + 100 дм² = 5.100 дм² = 50,1 м²
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.