Одним из решений, очевидно, является x=0. Так как /sin x/≤1, то решения могут существовать лишь на интервале [-0,1;0,1]. Производные функций sin(x) и 10*x соответственно равны cos(x) и 10, на интервале [-0,1;0,1] обе производные положительны и обе функции возрастают. Однако так как cos(x)<10, то на интервале [0;1] функция sin(x) возрастает медленнее, чем функция 10*x. Поэтому на этом интервале 10*x>sin(x), так что других решений, кроме x=0, на этом интервале нет. А так как обе функции - нечётные, то нет их и на интервале [-0,1;0). ответ: 1 решение.
Произведение сомножителей равно нулю тогда, когда хотя бы одно из них равно нулю. То есть данное уравнение распадается на совокупность уравнений. Имеем: (3сosx+4)(tgx-sqrt{3})=0 <=> [3cosx+4=0; tgx-sqrt{3}=0; <=> [cosx=4/3; tgx=sqrt{3}. Первое уравнение не имеем решения, так как значение угла для косинуса и для синуса лежит в промежутке [-1;1] (поскольку мы рассматриваем данные тригонометрические функции на Единичной окружности, где мин. и макс. значения колеблятся от -1 до 1). То есть -1<=cosx<=1; cosx=4/3 <=> x€ø; 2) tgx=sqrt{3} <=> x=arctg(sqrt{3})+pi*k, k£Z <=> x=pi/3+pi*k, k£Z. ответ: pi/3+pi*k, k£Z.
Имеем: (3сosx+4)(tgx-sqrt{3})=0 <=> [3cosx+4=0; tgx-sqrt{3}=0; <=> [cosx=4/3; tgx=sqrt{3}. Первое уравнение не имеем решения, так как значение угла для косинуса и для синуса лежит в промежутке [-1;1] (поскольку мы рассматриваем данные тригонометрические функции на Единичной окружности, где мин. и макс. значения колеблятся от -1 до 1). То есть -1<=cosx<=1; cosx=4/3 <=> x€ø;
2) tgx=sqrt{3} <=> x=arctg(sqrt{3})+pi*k, k£Z <=> x=pi/3+pi*k, k£Z.
ответ: pi/3+pi*k, k£Z.