Литр, употребляемый для вымеривания других жидкостей, должен иметь форму цилиндра, высота которого вдвое больше диаметра основания. Определить размеры такой кружки.
Пусть прямая а лежит в плоскости α , прямая в лежит в плоскости β. Прямые а и в параллельны. Плоскости α и β пересекаются по прямой с. Прямая а и с лежат в пл.α.Они параллельны, так как прямая а || пл.β (сущуствует прямая b в плоскости β, параллельная a), то прямая а не пересекается с прямой с , лежащей в плоскости β (как линия пересечения пл.α и пл. β), а значит a||c. Аналогично, прямая b || пл.α, так как существует в этой плоскости прямая a, параллельная b.Значит, прямая b не имеет общих точек с пл.α и с прямой с, лежащей в плоскости α ( прямая с - линия пересечения двух плоскостей-одновременно принадлежит и пл.α и пл. β).Поэтому b||c.
Прямая а и с лежат в пл.α.Они параллельны, так как прямая а || пл.β (сущуствует прямая b в плоскости β, параллельная a), то прямая а не пересекается с прямой с , лежащей в плоскости β (как линия пересечения пл.α и пл. β), а значит a||c. Аналогично, прямая b || пл.α, так как существует в этой плоскости прямая a, параллельная b.Значит, прямая b не имеет общих точек с пл.α и с прямой с, лежащей в плоскости α ( прямая с - линия пересечения двух плоскостей-одновременно принадлежит и пл.α и пл. β).Поэтому b||c.
1) 3 3/23 * 23/27 = 72/23* 23/27= 72/27 = 24/9 = 8/3
2) 1 1/5 * 1/6 = 6/5 * 1/6 = 1/5
3) 14 7/15 - 8/3 = 217/15 - 8/3 = 217/15 - 40/15 = 177/15
4) 177/15 - 1/5 = 177/15 - 3/15 = 174/15 = 11 9/15 = 11 3/5
1) 5 8/9 : 1 17/36 = 53/9 : 53/36 = 4
2) 4 + 1 1/4 = 5 1/4
3) 5 1/4 * 5/21 = 21/4 * 5/21 = 5/4 = 1 1/4
1) - 3,25 - 2,75 = - 6
2) - 6 : - 0,6 = 10
3) 0,8 * - 7 = - 5,6
4) 10 + (- 5,6) = 10 - 5,6 = 4,4
1) - 1 3/8 - 2 5/12 = - 11/8 - 29/12 = - 33/24 - 58/24 = - 91/24
2) - 91/24 : 5 5/12 = - 91/24 : 65/12 = - 91/130 = - 7/10
Пошаговое объяснение: