Купить каждый день откладывая одинаковую сумму денег на эти деньги в конце года купил 10 вершин получил 12 руб и у него осталось 45 коп. Сколько денег пять откладывала в день
Я предлагаю действовать перебором. Числитель не может быть меньше 10 (т.к. двузначный). Если он 10, то после вычитания станет 9, тогда знаменатель должен стать (после удвоения) 99 (чтобы дробь стала быть равной 1/11). Но никакое целое число после удвоения не равно 99, значит 10 в качестве числителя не подходит. Берём 11. После вычитания 1 станет 10. Значит знаменатель станет 110 (опять чтобы получилось 1/11)Чтобы он (знаменатель) стал 110, первоначально он должен быть 55. Т.е. дробь 11/55 нам подходит, т.к. после преобразований она становится 10/110 = 1/11. Рассуждая дальше, найдём ещё такие числа, например 13/66 - тоже подходит, и оно меньше, чем 11/55, дальше 15/77 и оно ещё меньше, 17/88 - следующее и 19/99 - последнее, т.к. дальше пойдут трёхзначные знаменатели. И эта последняя дробь наименьшая из всех. Значит она и есть ответ. И сумма числителя и знаменателя 118
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)