Второй график - график вс для построения y₂ - график слагаемых |x+2| и |x-2|
Третий график - график y₂ в случае a=1
Четвертый график - изображение y₁ и разные варианты y₂, при разных значениях параметра а
а=1, а=1/2, а=1/4, а=-1/4, а=-1/2, а=-1 (при а=0 y₂ с осью Ox)
В случае a=1/2 крылья графика y₂ параллельны крыльям графика y₂ - значит они не пересекутся. (соответственно, решений не будет)
Как только мы сделаем a меньше, чем 1/2, наклон y₂ будет более пологий, чем у крыльев y₁ и значит крылья пересекутся - справа будет одно пересечение прямых и слева одно - значит будет два решения (например, смотри график при а=1/4
Теперь, каким может быть минимальное значение параметра а? (рассматриваем далее только значения a<1/2.)
В случае, который разбираю внизу справа на фото - это случай, когда вершина графика y₁ совпадет с правым углом y₂ - решаю уравнение и нахожу, что это происходит при а=-3/4 - в этом случае будет одно решение (x=2)
для всех больших значениях параметра решения будет два.
1)86+71=157 км\час скорость сближения
157*9=1413 км между городами
2)Ширина - 44:4=11дм
Площадь - 44*11=484дм в квадрате
Периметр - 44*2 и 11*2=88+22=110дм
3)калькулятор, не?
4)Масса тигра 320 (кг)
1. 70 (кг) - разница масс тигра и льва
2. 570 (кг) - масса тигра и льва
3. (570-70):2 (кг) =250 (кг) - масса льва
4. 250 + 70 = 320 (кг) - масса тигра
Пошаговое объяснение:
3*3=9 м2 - площадь стены
30*20 = 600 см2 - площадь 1 плитки
9 м2 = 90000 см2
90000 / 600 = 15 плиток - потребуется
ответ. 15 плиток-вот так мб
a∈(-3/4; 1/2)
Пошаговое объяснение:
Прилагаю фото решения. Наверху преобрахование уравнения - уравниваю двае функции:
y₁=a(|x+2|+|x-2|)
y₂=|x-2|-3
Первый график - график y₁
Второй график - график вс для построения y₂ - график слагаемых |x+2| и |x-2|
Третий график - график y₂ в случае a=1
Четвертый график - изображение y₁ и разные варианты y₂, при разных значениях параметра а
а=1, а=1/2, а=1/4, а=-1/4, а=-1/2, а=-1 (при а=0 y₂ с осью Ox)
В случае a=1/2 крылья графика y₂ параллельны крыльям графика y₂ - значит они не пересекутся. (соответственно, решений не будет)
Как только мы сделаем a меньше, чем 1/2, наклон y₂ будет более пологий, чем у крыльев y₁ и значит крылья пересекутся - справа будет одно пересечение прямых и слева одно - значит будет два решения (например, смотри график при а=1/4
Теперь, каким может быть минимальное значение параметра а? (рассматриваем далее только значения a<1/2.)
В случае, который разбираю внизу справа на фото - это случай, когда вершина графика y₁ совпадет с правым углом y₂ - решаю уравнение и нахожу, что это происходит при а=-3/4 - в этом случае будет одно решение (x=2)
для всех больших значениях параметра решения будет два.