Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
Это неравенство можно записать в виде двойного неравенства -72<y<72
Между числами -72 и 72 лежит 71 отрицаиельное число, 71 положительное число и 0. Всего имеем 143 числа
Может быть вот так тебе будет легче:
|у| < 72; снимаем модуль - 72 < у < 72; так как меньше 72, значит 72 не считаем; и больше - 72, то тоже не считаем - 72; считаем числа - 71, - 70, - 69, - 68, - 67 ... - 3, - 2, - 1, до 0; = 71 число; ноль считаем=1 число; и до 71 считаем 1,2,3,4, ... ,68,69,70,71. сумма всех чисел 71+1+71=143 целых решений
Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
1,2, 3 в фото
Пошаговое объяснение:
4.
12/33=0,363636363≈0,36
5 4/9 = 49/9 = 5,444444444≈5,44
5.
Это неравенство можно записать в виде двойного неравенства -72<y<72
Между числами -72 и 72 лежит 71 отрицаиельное число, 71 положительное число и 0. Всего имеем 143 числа
Может быть вот так тебе будет легче:
|у| < 72; снимаем модуль - 72 < у < 72; так как меньше 72, значит 72 не считаем; и больше - 72, то тоже не считаем - 72; считаем числа - 71, - 70, - 69, - 68, - 67 ... - 3, - 2, - 1, до 0; = 71 число; ноль считаем=1 число; и до 71 считаем 1,2,3,4, ... ,68,69,70,71. сумма всех чисел 71+1+71=143 целых решений