Пусть t час время движения пассажирского поезда до встречи. Тогда (t - 0,1) час время движения электропоезда до встречи. 6 мин = 6 / 60 час = 0,1час 68t путь пассажирского поезда до встречи. 85 * (t - 0.1) путь электропоезда до встречи. Так как эти расстояния равны, то составим уравнение. 68t = 85 * (t - 0.1) 68t = 85t - 8.5 85t - 68 t = 8.5 17t = 8.5 t = 8.5 / 17 t = 0.5 68 * 0.5 = 34 (км) 40 - 34 = 6 (км) до пункта N. В 6 км от N электропоезд догонит пассажирский поезд.
Y=x²+2x-3; 1) Находим координаты вершины параболы: x0=-b/2a=-2/2=-1, y0=(-1)²+2*(-1)-3=-4. (-1;-4). 2) Проводим ось симметрии х=-1. 3) Находим точки пересечения параболы с координатными осями: OX (y=0): x²+2x-3=0; D=4+12=16; x1=(-2-4)/2=-6/2=-3; x2=(-2+4)/2=2/2=1. (-3;0), (1;0). OY (x=0): y=0²+2*0-3=-3. (0;-3). 4) Находим координаты точки, симметричной точке (0;-3) относительно оси симметрии прямой х=-1: (-2;-3). 5) По полученным точкам строим график, ветви параболы направлены вверх, так как а=1>0. График параболы может иметь с прямой параллельной оси абсцисс (ОХ) ни одной, одну или две точки пересечения, значит, наибольшее число общих точек - 2.
Тогда (t - 0,1) час время движения электропоезда до встречи.
6 мин = 6 / 60 час = 0,1час
68t путь пассажирского поезда до встречи.
85 * (t - 0.1) путь электропоезда до встречи.
Так как эти расстояния равны, то составим уравнение.
68t = 85 * (t - 0.1)
68t = 85t - 8.5
85t - 68 t = 8.5
17t = 8.5
t = 8.5 / 17
t = 0.5
68 * 0.5 = 34 (км)
40 - 34 = 6 (км) до пункта N.
В 6 км от N электропоезд догонит пассажирский поезд.
1) Находим координаты вершины параболы:
x0=-b/2a=-2/2=-1,
y0=(-1)²+2*(-1)-3=-4.
(-1;-4).
2) Проводим ось симметрии х=-1.
3) Находим точки пересечения параболы с координатными осями:
OX (y=0): x²+2x-3=0;
D=4+12=16;
x1=(-2-4)/2=-6/2=-3;
x2=(-2+4)/2=2/2=1.
(-3;0), (1;0).
OY (x=0): y=0²+2*0-3=-3.
(0;-3).
4) Находим координаты точки, симметричной точке (0;-3) относительно оси симметрии прямой х=-1: (-2;-3).
5) По полученным точкам строим график, ветви параболы направлены вверх, так как а=1>0.
График параболы может иметь с прямой параллельной оси абсцисс (ОХ) ни одной, одну или две точки пересечения, значит, наибольшее число общих точек - 2.