а) Пусть геометрическая прогрессия имеет знаменатель . Тогда получим последовательность . Число 686 может быть записано на доске.
б) Заметим, что знаменатель прогрессии q не может быть иррациональным числом: в противном случае второй член прогрессии b₂ = 128q — иррациональное число, что противоречит условию. Значит, q — рациональное число.
Предположим, что 496 является n-ным членом последовательности. Тогда . Поскольку 31 — простое число, оно не является степенью какого-либо другого числа. Значит, n = 1, . Тогда получаем геометрическую прогрессию — третий член последовательности не трёхзначный, что противоречит условию. Значит, прогрессии с членом 496 не существует.
в) Пусть A — наибольший возможный член геометрической прогрессии, по условию A < 1000. Тогда . Число является степенью некоторого рационального числа, значит, , где k — некоторое целое число из промежутка [0, 7], a — положительное нечётное число. Число представимо в таком виде, поскольку на можно сократить, в знаменателе останется , далее дробь несократима и является степенью n = 7 - k числа q: . Значит, .
Переберём все k от 0 до 7:
k = 0: . k = 1: . k = 2: . k = 3: . k = 4: . k = 5: . k = 6: k = 7: — верно, A = 128.
Наибольшее значение A = 972. Покажем, что оно достигается. Пусть . Тогда
Таким образом, наибольшее число, которое могла выписать Даша — 972.
Площадь боковой поверхности треугольной призмы будет:
Sбок=18*(10+17+21)=864 см²
Для нахождения площади основания можно воспользоваться формулой Герона для нахождения площади треугольника, когда известны только длины его сторон, но неизвестна высота:
S=√p(p-a)(p-b)(p-c) (под корнем всё выражение!), где a,b,c- стороны треугольника, p- полупериметр треугольника, p=(a+b+c)/2.
а) да; б) нет; в) 972
Пошаговое объяснение:
а) Пусть геометрическая прогрессия имеет знаменатель . Тогда получим последовательность . Число 686 может быть записано на доске.
б) Заметим, что знаменатель прогрессии q не может быть иррациональным числом: в противном случае второй член прогрессии b₂ = 128q — иррациональное число, что противоречит условию. Значит, q — рациональное число.
Предположим, что 496 является n-ным членом последовательности. Тогда . Поскольку 31 — простое число, оно не является степенью какого-либо другого числа. Значит, n = 1, . Тогда получаем геометрическую прогрессию — третий член последовательности не трёхзначный, что противоречит условию. Значит, прогрессии с членом 496 не существует.
в) Пусть A — наибольший возможный член геометрической прогрессии, по условию A < 1000. Тогда . Число является степенью некоторого рационального числа, значит, , где k — некоторое целое число из промежутка [0, 7], a — положительное нечётное число. Число представимо в таком виде, поскольку на можно сократить, в знаменателе останется , далее дробь несократима и является степенью n = 7 - k числа q: . Значит, .
Переберём все k от 0 до 7:
k = 0: . k = 1: . k = 2: . k = 3: . k = 4: . k = 5: . k = 6: k = 7: — верно, A = 128.Наибольшее значение A = 972. Покажем, что оно достигается. Пусть . Тогда
Таким образом, наибольшее число, которое могла выписать Даша — 972.
Sполн=1032 см²
V=1512 см3
Пошаговое объяснение:
V=Sосн*H
S oсн=√ (p * (p-a) * (p-b) * (p-c))
p=P/2. P=a+b+c
p = (10+17+21) / 2
p=24
S=√ (24 * (24-10) * (24-17) * (24-21))
S=84
V=84*18
Площадь боковой поверхности треугольной призмы будет:
Sбок=18*(10+17+21)=864 см²
Для нахождения площади основания можно воспользоваться формулой Герона для нахождения площади треугольника, когда известны только длины его сторон, но неизвестна высота:
S=√p(p-a)(p-b)(p-c) (под корнем всё выражение!), где a,b,c- стороны треугольника, p- полупериметр треугольника, p=(a+b+c)/2.
p=(10+17+21)/2=24
S=√24(24-10)(24-17)(24-21)=√24*14*7*3=√7056=84 см²
Полная поверхность призмы равна:
Sполн=Sбок+2Sосн
Sполн=864+2*84=864+168=1032 см²
Sполн=1032 см²