Известно, что в среднем 60% телевизоров продаются в кредит. Найти наивероятнейшее число телевизоров, проданных в кредит среди семи проданных телевизоров и вычислить соответствующую этому событию вероятность.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
5с < 33; с ∈ (1; 6).
1) Предположим, что с = 6, тогда:
5 * 6 = 30
33 - 30 = 3
Так как d - натуральное число, то 4d ≠ 3. Значит, с ≠ 6.
2) Предположим, что с = 5, тогда:
5 * 5 = 25
33 - 25 = 8
4d = 8
d = 8 : 4
d = 2 - удовлетворяет условию задачи.
3) Предположим, что с = 4, тогда:
5 * 4 = 20
33 - 20 = 13
Так как d - натуральное число, то 4d ≠ 13. Значит, с ≠ 4.
4) Предположим, что с = 3, тогда:
5 * 3 = 15
33 - 15 = 18
Так как d - натуральное число, то 4d ≠ 18. Значит, с ≠ 3.
5) Предположим, что с = 2, тогда:
5 * 2 = 10
33 - 10 = 23
Так как d - натуральное число, то 4d ≠ 23. Значит, с ≠ 2.
6) Предположим, что с = 1, тогда:
5 * 1 = 5
33 - 5 = 28
4d = 28
d = 28 : 4
d = 7 - удовлетворяет условию задачи.
ответ: d = 2 или d = 7.
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал