Изобразить область интегрирования и вычислить объём тела, ограниченного поверхностями, двумя а) с двойного интеграла б) с тройного интеграла. z=3y x=0 x=1 y=0 y=2 z=O
Сколькими можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
а) считаются различными?
б) считаются тождественными?
Решение
а) 106 = 26·56. Каждый множитель однозначно определяется количеством двоек и пятёрок, входящих в его разложение. Поэтому задача сводится к разложению шести белых и шести чёрных шаров по трём различным ящикам. Аналогично задаче 30729 получаем б) Есть ровно одно разложение, не зависящее от порядка сомножителей, – в нём все множители равны 100. Те разложения, в которых есть ровно два равных множителя, мы в п. а) сосчитали трижды. В каждый из равных множителей 2 может входить в степени 0, 1, 2 или 3, то есть четырьмя различными столькими же может входить 5. Всего получаем 16 разложений такого вида, но одно из них – рассмотренное выше разложение 100·100·100. Количество разложений с тремя различными множителями равно 784 – 1 – 3·15 = 738. Каждое из них мы сосчитали 6 раз. Всего получаем
Особенно мне понравилось стихотворение Сергея Есенина “Стансы”. В нем поэт рассуждает о назначении поэта и поэзии. Он пишет:Стишок писнутъ всякий может —О девушке, о звездах, о луне...Но его мысли устремлены совсем в иную сторону. Есенин восхваляет сделанное руками человеческими: нефтяные вышки, фонари. Он горд, что пишет об этом. Сергей Есенин видит прямое назначение поэта. Он ставит себя выше тех писателей, которые пишут хвалебные стихи:Я вам не кенар!Я поэт!И не чета каким-то там Демьянам,Пускай бываю иногда я пьяным,Зато в глазах моихПрозрений дивных свет.Он не променял бы судьбу писателей на свою судьбу, хотя она нелегка:... Но очень жестокоСпать там на скамейкеИ пьяным голосом читать какой-то стихО клеточной судьбе Несчастной канарейки.В этом стихотворении Сергей Есенин пишет о Ленине, о Марксе. Он уважает их, как великих, а не как коммунистов. Он восхваляет все великое, созданное руками человека.Есенин считает себя настоящим поэтом, и в этом с ним можно согласиться.
Сколькими можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
а) считаются различными?
б) считаются тождественными?
Решение
а) 106 = 26·56. Каждый множитель однозначно определяется количеством двоек и пятёрок, входящих в его разложение. Поэтому задача сводится к разложению шести белых и шести чёрных шаров по трём различным ящикам. Аналогично задаче 30729 получаем б) Есть ровно одно разложение, не зависящее от порядка сомножителей, – в нём все множители равны 100. Те разложения, в которых есть ровно два равных множителя, мы в п. а) сосчитали трижды. В каждый из равных множителей 2 может входить в степени 0, 1, 2 или 3, то есть четырьмя различными столькими же может входить 5. Всего получаем 16 разложений такого вида, но одно из них – рассмотренное выше разложение 100·100·100. Количество разложений с тремя различными множителями равно 784 – 1 – 3·15 = 738. Каждое из них мы сосчитали 6 раз. Всего получаем
1 + 15 + 738 : 6 = 139 разложений.
Пошаговое объяснение: