Из одной точки к плоскости проведены перпендикуляр и две наклонные, длины которых равны 10 см и 11 см. Найдите длину перпендикуляра, если проекции наклонных относятся как 2:5.
А) делаем то, что написано. На моих картинках все пути идут из клетки 0 (исходная) в клетку 1, из неё в клетку 2 и т.д. Получится клетка b5.
б) тут нужно придумать последовательность шагов, которая приведёт в нужную клетку. Например, подходит такая: вправо-вверх-вправо-вверх-вправо-вправо-вверх-вправо-вправо.
в) здесь было необходимо найти исходную клетку. Идём с конца, применяя обратные операции: например, последний шаг вверх — мы идём из f8 вниз, и т.д.Таким образом найдём клетку c4. Для проверки можно пройти весь путь в прямом порядке и вновь попасть в f8.
Б) (238 145-237 776):41+327:3*7 = 772
В) 10000-120*80+(900-750:25)*7 = 6460
А) 690:3*205-47150+850=850
1) 690 : 3 = 230
2) 230 * 205 = 47150
3) 47150 - 47150 = 0
4) 0 + 850 = 850
ответ: 850
Б) (238 145-237 776):41+327:3*7 = 772
1) 238 145 - 237 776 = 369
2) 369 : 41 = 9
3) 327 : 3 = 109
4) 109 * 7 = 763
5) 763 + 9 = 772
ответ: 772
В) 10000-120*80+(900-750:25)*7 = 6460
1) 750 : 25 = 30
2) 900 - 30 = 870
3) 870 * 7 = 6090
4) 120 * 80 = 9600
5) 10000 - 9600 = 400
6) 6090 + 400= 6460
ответ: 6460
б) тут нужно придумать последовательность шагов, которая приведёт в нужную клетку. Например, подходит такая: вправо-вверх-вправо-вверх-вправо-вправо-вверх-вправо-вправо.
в) здесь было необходимо найти исходную клетку. Идём с конца, применяя обратные операции: например, последний шаг вверх — мы идём из f8 вниз, и т.д.Таким образом найдём клетку c4. Для проверки можно пройти весь путь в прямом порядке и вновь попасть в f8.