В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
resssnizisss
resssnizisss
25.12.2021 15:54 •  Математика

Из некоторой точки проведены к плоскости две наклонные, образующие с ней углы 45° и 60°. найдите длину меньшей наклонной, если расстояние между основаниями наклонных равно 8, а угол между их проекциями на плоскость равен 30°. нужно решение и ответ.

Показать ответ
Ответ:
lalala106
lalala106
27.08.2020 01:26
АВ^2=8^2=64=a^2+b^2-2abcos30=a^2+b^2-ab√3
(по т. косинусов)
мне нужно еще одно уравнение, связывающее а и b,
мне высота h
Из ΔАВА1  tg 60=h/a=√3;  h=a√3
из ΔАА1С  tg45=h/b=1; h=b;  a√3=b
подставлю в верхнее уравнение
a^2+(a√3)^2-a*a√3*√3=64
a^2+3a^2-3a^2=64
a=8
Чтобы найди длину меньшей наклонной АВ=a/cos60=8/(1/2)=16
Из некоторой точки проведены к плоскости две наклонные, образующие с ней углы 45° и 60°. найдите дли
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота