В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
TINAdTINA
TINAdTINA
23.09.2021 13:01 •  Математика

Используя координатную прямую, найдите объединение и пересечение числовых промежутков, результат запишите в таблицу: можно с решением СОР​


Используя координатную прямую, найдите объединение и пересечение числовых промежутков, результат зап

Показать ответ
Ответ:
DiliaSmail
DiliaSmail
13.09.2020 19:51
Не факт ещё, что данное уравнение явлдяется квадратным, поскольку параметр содержится как раз при квадрате.1)a = 0 Тогда уравнение не является квадратным, получаем уравнение вида                               -5x -5 = 0Но линейное уравнение имеет лишь один корень. Значит, данное значение параметра нам не подходит.2)Рассмотрю случай, когда a ≠ 0. Тогда уравнение является квадратным.                                                            ax² - (a² + 5)x + 3a-5 = 0  Теперь вспомним, а когда квадратное уравнение имеет 2 различных корня? Тогда, когда его дискриминант больше 0. Так что, первым делом выделим дискриминант этого уравнения.a = a ; b = -(a²+5);c = 3a - 5; D = b² - 4ac = (-(a²+5))² - 4a(3a - 5) = a^4 + 10a² + 25 - 12a² + 20a = a^4 - 2a² + 20a + 25D > 0, как мы уже сказали. теперь решим неравенство.a^4 - 2a² + 20a + 25 > 0
0,0(0 оценок)
Ответ:
Докажем, что при любом натуральном и выражение А(n) = 4n + 15n - 1 кратно 9. Используем стандартную схему доказательства: 1. При n = 1 выражение A(1) = 41 + 15 · 1 - 1 = 18 кратно 9. 2. Предположим, что при n = k выражение А(k) = 4k + 15k - 1 кратно 9, т. е. 4k + 15k - 1 = 9р (где р - натуральное число). 3. При n = k + 1 надо доказать, что выражение А(k +1) = 4k+1 + 15(k + 1) - 1 делится на 9. Для доказательства можно использовать два й Поступим, как и в примере 1, т. е. выделим в выражении А(k + 1) часть А(k), которая делится на 9. Для этого преобразуем выражение А(k + 1) к виду А(k +1) = 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18 = 4 А(k) + 9(2 – 5k). Видно, что выражение А(k + 1) является суммой двух слагаемых, каждое из которых делится на 9. Сложность этого состоит в умении в выражении А(k + 1) выделить часть А(k), т. е. догадаться до преобразования 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18. Поэтому рассмотрим другой лишенный такого недостатка. 2-й Из выражения 4k + 15k - 1 = 9р (пункт 2) найдем 4k = 9р + 1 – 15k и подставим в выражение А(k +1) = 4k+1 + 15k + 14 = 4(9p + 1 – 15k) + 15k + 14 = 36p + 18 – 45k. Видно, что выражение A(k + 1) состоит из трех слагаемых, каждое из которых делится на. 9. Связь между пунктами 2 и 3 была обеспечена за счет того, что в пункте 2 была найдена величина 4k и подставлена в выражение пункта 3. Заметим, что если на число п накладываются по условию задачи ограничения, то необходимо ввести новое натуральное число т и свести задачу к старой схеме.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота