Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в треугольника для треугольника порядке обхода контура), причем OA = 5, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 6. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 6. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 8 или 9, OB = 1, BC не превосходит 6. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии невозможна.
Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в треугольника для треугольника порядке обхода контура), причем OA = 5, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 6. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 6. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 8 или 9, OB = 1, BC не превосходит 6. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии невозможна.
Пошаговое объяснение
2 * x ^ 2 - 5 * x - 7 = 0
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = ( - 5 ) ^ 2 - 4 · 2 · ( - 7 ) = 25 + 56 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 5 - √ 81 ) / ( 2 · 2 ) = ( 5 - 9 ) / 4 = - 4 / 4 = -1
x2 = ( 5 + √ 81 ) / ( 2 · 2 ) = ( 5 + 9 ) / 4 = 14 / 4 = 7 / 2 = 3 . 5
Проверка:
при х = - 1 , тогда
2 * ( - 1 ) ^ 2 - 5 * ( - 1 ) - 7 = 0
2 * 1 + 5 * 1 - 7 = 0
2 + 5 - 7 = 0
7 - 7 = 0
верно
при х = 7 / 2, тогда
2 * ( 7 / 2 ) ^ 2 - 5 * 7 / 2 - 7 = 0
2 * 49 / 4 - 35 / 2 - 7 = 0
( 98 - 70 ) / 4 - 7 = 0
28 / 4 - 7 =0
7 - 7 = 0
верно
ответ: х = - 1
х = 7 / 2
Пошаговое объяснение:
/ это дробь в ответе наверное