Месяц или 2 назад скачал крякнутую NeuroNative, там такие же странные задачи были, но с постепенным усложнением.
Суть в том, что ты вспоминаешь как можно было бы получить число справа, к примеру, 9 -- это три умножить на три.
Потом, смотришь, есть ли в последовательности участник получения, условно, девятки. К примеру, в последовательности 1, 2, 3 есть тройка.
Потом, смотришь, можно ли из оставшихся цифр получить других участников получения, условно, девятки. К примеру, можно ли из 1 и 2 получить тройку?
Иногда, оставались числа, которые мне были не нужны, и так как каждое следующее число больше предыдущего на 1, то на их разницу, к примеру на (-5+6), можно умножить всё остальное и тогда результат не изменится! Кроме того, из пары соседних чисел можно получить не только 1, но и -1, а если сложить 1 и -1, то получится ноль, сложение с которым тоже никак не повлияет на результат!
Такие задачи с подбором и угадыванием, очень похожи на то, чем занимаются хакеры, когда пытаются понять, куда в программу можно вставить свой код, не сломав её, или по какому адресу в памяти лежит доступ к нужной переменной, или к нужному функционалу.
(1 + 2) * 3 = 9;
1 * 2 * 3 + 4 = 10;
1 - 2 + 3 + 4 + 5 = 11;
тут терпение закончилось
(1 + (2 - 3) * (4 - 5)) * 6 = 12;
- 1 + (2 * (3 - 4) * (5 - 6)) * 7 = 13;
1 * 2 * (3 + 4) + (5 - 6) - (7 - 8) = 14;
(1 * 2 + (- 3 + 4)) * 5 + (-6 + 7) + (8 - 9) = 15;
Пошаговое объяснение:
Месяц или 2 назад скачал крякнутую NeuroNative, там такие же странные задачи были, но с постепенным усложнением.
Суть в том, что ты вспоминаешь как можно было бы получить число справа, к примеру, 9 -- это три умножить на три.
Потом, смотришь, есть ли в последовательности участник получения, условно, девятки. К примеру, в последовательности 1, 2, 3 есть тройка.
Потом, смотришь, можно ли из оставшихся цифр получить других участников получения, условно, девятки. К примеру, можно ли из 1 и 2 получить тройку?
Иногда, оставались числа, которые мне были не нужны, и так как каждое следующее число больше предыдущего на 1, то на их разницу, к примеру на (-5+6), можно умножить всё остальное и тогда результат не изменится! Кроме того, из пары соседних чисел можно получить не только 1, но и -1, а если сложить 1 и -1, то получится ноль, сложение с которым тоже никак не повлияет на результат!
Такие задачи с подбором и угадыванием, очень похожи на то, чем занимаются хакеры, когда пытаются понять, куда в программу можно вставить свой код, не сломав её, или по какому адресу в памяти лежит доступ к нужной переменной, или к нужному функционалу.
Не уклоняйтесь от них :-)
а) 1 1/4 раза.
б) 1 2/3 раза.
в) 2 раза.
г) 5 раз.
Пошаговое объяснение:
а) Первоначальное число равно 200,
Число, полученное после уменьшения двухсот на 20%, равно
200 - 0,2•200 = 200 - 40 = 160.
Во сколько раз число 200 больше, чем число 160?
200 : 160 = 5/4 = 1 1/4 (раза).
б) Первоначальное число равно 200.
Число, полученное после уменьшения двухсот на 40%, равно
200 - 0,4•200 = 200 - 80 = 120.
Во сколько раз число 200 больше, чем число 120?
200 : 120 = 5/3 = 1 2/3 (раза).
в) Первоначальное число равно 200.
Число, полученное после уменьшения двухсот на 50%, равно
200 - 0,5•200 = 200 - 100 = 100.
Во сколько раз число 200 больше, чем число 100?
200 : 100 = 2 (раза).
г) Первоначальное число равно 200.
Число, полученное после уменьшения двухсот на 80%, равно
200 - 0,8•200 = 200 - 160 = 40.
Во сколько раз число 200 больше, чем число 40?
200 : 40 = 5(раз).