Гюльнар выходя из дома возвращает домой посмотрю на часы через зеркало Определите время в которой длина обычной или домой вернулась домой по соображению часов на зеркале
Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.
a = b-5
НАЙТИ
a=? b=?
РЕШЕНИЕ
Приводим к общему знаменателю (и забываем о нём).
3*(a-3)*b = 3*a*(b+4) - b*(b+4)
3*a*b - 9*b = 3*a*b + 12*a - b² - 4*b
Упрощаем и делаем подстановку: a = b-5
b² - 5*b - 12*(b-5) = 0
Упростим
b² - 17*b + 60 = 0
Решаем квадратное уравнение.
Дискриминант - D = 49, √49 = 7 и находим корни - b₁ = 12, b₂ = 5
b = 12 и a = 12-5 = 7
ОТВЕТ Дробь 7/12
Проверим второй корень уравнения:
b = 5 и а = 0 или дробью a/b = 0.
Получили на 1/3 меньше исходного числа.
По условию задачи тоже почти подходит, но 0 - не дробь - не подходит.