Рассмотрим треугольник ABC. В нем провели медианы AE и CD. Так как D - середина AB, E - середина BC, то DE - средняя линия ABC. Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4. S_ABC=4*S_DBE, S_ADEC = S_ABC - S_DBE = 3*S_DBE, Отсюда S_ABC = 4/3 * S_ADEC. Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6. S_ABC=4/3*6=8. ответ: 2)8.
Пусть в последний час было налито v м^3 воды. Пусть в каждый час объем наливаемой воды в час уменьшался в q раз. Тогда воды было налито vq^4, vq^3, vq^2, vq и v в каждый их пяти часов. Известно, что vq^4+vq^3+vq^2+vq = 2*(vq^3+vq^2+vq+v). Отсюда vq(q^3+q^2+q+1)=2v(q^3+q^2+q+1). v(q-2)(q^3+q^2+q+1)=0 v(q-2)(q+1)(q^2+1)=0. Единственным решением тут будет q=2, удовлетворяющим смыслу задачи. Согласно второму условию, vq^4+vq^3=48. v=48/(q^4+q^3)=48/(2^4+2^3)=2. Теперь найдем объем воды во всей цистерне: V = vq^4+vq^3+vq^2+vq+v=v*(q^4+q^3+q^2+q+1)=v(q^5-1)/(q-1)=2*(2^5-1)/(2-1) м^3 = 62 м^3.
Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4.
S_ABC=4*S_DBE,
S_ADEC = S_ABC - S_DBE = 3*S_DBE,
Отсюда S_ABC = 4/3 * S_ADEC.
Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6.
S_ABC=4/3*6=8.
ответ: 2)8.
Известно, что vq^4+vq^3+vq^2+vq = 2*(vq^3+vq^2+vq+v).
Отсюда vq(q^3+q^2+q+1)=2v(q^3+q^2+q+1).
v(q-2)(q^3+q^2+q+1)=0
v(q-2)(q+1)(q^2+1)=0.
Единственным решением тут будет q=2, удовлетворяющим смыслу задачи.
Согласно второму условию, vq^4+vq^3=48.
v=48/(q^4+q^3)=48/(2^4+2^3)=2.
Теперь найдем объем воды во всей цистерне:
V = vq^4+vq^3+vq^2+vq+v=v*(q^4+q^3+q^2+q+1)=v(q^5-1)/(q-1)=2*(2^5-1)/(2-1) м^3 = 62 м^3.