F(x) и g(x) - квадратные трехчлены, у каждого из которых старший коэффициент равен 1. известно, что трехчлен h(x) = f(x) + g (x) имеет два различных корня, и каждый из этих корней является также корнем уравнения f(x) = g^3(x) + g^2(x). докажите, что трехчлены f(x) и g(x) равны.
1) 64 = 2⁶; 54 = 2 · 3³
НОК (64 и 54) = 2⁶ · 3³ = 1728 - наименьшее общее кратное
1728 : 64 = 27 1728 : 54 = 32
2) 95 = 5 · 19; 114 = 2 · 3 · 19
НОК (95 и 114) = 2 · 3 · 5 · 19 = 570 - наименьшее общее кратное
570 : 95 = 6 570 : 114 = 5
3) 100 = 2² · 5²; 125 = 5³
НОК (100 и 125) = 2² · 5³ = 500 - наименьшее общее кратное
500 : 100 = 5 500 : 125 = 4
4) 121 = 11²; 88 = 2³ · 11
НОК (121 и 88) = 2³ · 11² = 968 - наименьшее общее кратное
968 : 121 = 8 968 : 88 = 11
5) 168 = 2³ · 3 · 7; 140 = 2² · 5 · 7
НОК (168 и 140) = 2³ · 3 · 5 · 7 = 840 - наименьшее общее кратное
840 : 168 = 5 840 : 140 = 6
6) 144 = 12²; 324 = 2² · 3⁴
Числа 144 и 324 взаимно простые, так как у них нет общих делителей, кроме единицы
НОК (144 и 324) = 144 · 324 = 46656 - наименьшее общее кратное
7) 125 = 5³; 225 = 3² · 5²
НОК (125 и 225) = 3² · 5³ = 1125 - наименьшее общее кратное
1125 : 125 = 9 1125 : 225 = 5
8) 185 = 5 · 37; 111 = 3 · 37
НОК (185 и 111) = 3 · 5 · 37 = 555 - наименьшее общее кратное
555 : 185 = 3 555 : 111 = 5
Боковая поверхность тела вращения S = 16,8π см².
Пошаговое объяснение:
Рисунок прилагается.
При вращении прямоугольного треугольника ABC вокруг прямой, содержащей гипотенузу AB получается тело вращения, образованной двумя конусами с общим основанием и образующими, равными катетам треугольника AC и BC. Радиус основания конусов R равен высоте CH треугольника ABC, проведенной из вершины прямого угла C.
В ΔABC ∠C = 90°, катет AC = 4 см, катет BC = 3 см. По т.Пифагора найдем гипотенузу AB:
AB = (см).
Найдем высоту CH в ΔABC.
Воспользуемся определением синуса угла в прямоугольном треугольнике: синус угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе.
В ΔAHC: sin∠A = ;
В ΔABC: sin∠A = ;
; ;
Радиус основания конусов R = CH = 2,4 см.
Боковая поверхность конуса равна половине произведения длины окружности основания на образующую. S = * 2πR *L = πRL.
Боковая поверхность тела вращения равна сумме боковых поверхностей обоих конусов.
S₁ = π * 2,4 см * 4 см = 9,6π см²;
S₂ = π * 2,4 см * 3 см = 7,2π см²;
S = S₁ + S₂ = 16,8π см².