Пусть Ф - сумма монет у Фомы.
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110
Пошаговое объяснение:
Пусть Ф - сумма монет у Фомы.
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ 70 + Е = Ю
{ Ф - 40 = Ю
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110
Пошаговое объяснение:
v + v₀ - скорость баржи по течению весной
v - v₀ - скорость баржи против течения весной
v + v₀ - 1 - скорость баржи по течению летом
v - v₀ + 1 - скорость баржи против течения летом
Тогда: { v + v₀ = 5(v - v₀)
{ v + v₀ - 1 = 3(v - v₀ + 1)
{ v =1,5v₀
{ 1,5v₀ + v₀ - 1 = 4,5v₀ - 3v₀ + 3
2,5v₀ - 1,5v₀ = 4
v₀ = 4 (км/ч) - скорость течения весной
v + 4 - 1 = 3(v - 4 + 1)
v + 3 = 3v - 9
12 = 2v
v = 6 (км/ч) - скорость баржи
ответ: скорость течения весной - 4 км/ч.