Двое рабочих штукатурят стену. Когда первый проработал 2 часа, а второй 5 часов, оказалось, что они выполнили половину работы. После ещё 3 часов совместной работы оказалось, что осталось поштукатурить 1/20 часть стены. За какое время каждый из строителей справится с работой в отдельности?
1) Поскольку за х рублей можно купить 3 м ситца, то для того чтобы узнать стоимость одного метра ситца, нужно стоимость трех метров ситца разделить на количество метров: х : 3 = х/3. 2) Поскольку за х рублей можно купить 2 м полотна, то для того чтобы узнать стоимость одного метра полотна, нужно стоимость двух метров ситца разделить на количество метров: х : 2 = х/2. 3) Узнаем на сколько рублей полотно дороже ситца: х/2 - х/3 = х(1/2 - 1/3) = х(3-2)/6 = х/6 рублей. ответ: на х/6 рублей полотно дороже ситца.
Пошаговое объяснение:
1) Поскольку за х рублей можно купить 3 м ситца, то для того чтобы узнать стоимость одного метра ситца, нужно стоимость трех метров ситца разделить на количество метров: х : 3 = х/3. 2) Поскольку за х рублей можно купить 2 м полотна, то для того чтобы узнать стоимость одного метра полотна, нужно стоимость двух метров ситца разделить на количество метров: х : 2 = х/2. 3) Узнаем на сколько рублей полотно дороже ситца: х/2 - х/3 = х(1/2 - 1/3) = х(3-2)/6 = х/6 рублей. ответ: на х/6 рублей полотно дороже ситца.
Числоед, который ел числа кратные 8, но не кратные 11
Пошаговое объяснение:
Числа кратные 8-ми (в пределах от 1 до 1000000 имеют вид):
8, 8*2, 8*3,...8*k,..., 8*125000=1000000
Числа кратные 11-ти (в пределах от 1 до 1000000 имеют вид):
11, 11*2, 11*3,...11*n,..., 11*90909=999999
Чтобы найти количество чисел кратных 8, но не кратных 11, необходимо из общего количества чисел кратных 8 (125000) вычесть числа кратные 8*11=88, ибо 11 и 8 взаимно простые.
Аналогично, чтобы найти количество чисел кратных 11, но не кратных 8, достаточно из количества чисел кратных 11 (90909) вычесть количество чисел кратных 88 (то же самое количество что и для предыдущих чисел).
Таким образом, больше всего цифр съел числоед, который ел числа кратные 8, но не кратные 11, но в том, что оба из них "лопнули" никаких сомнений :)