В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

Две окружности ,каждая из которых вписана в острый угол 60* , касаются друг друга внешним образом. найдите расстояние от точки касания окружностей до стороны угла, если радиус большой окружности равен 23

Показать ответ
Ответ:
Anonim1678
Anonim1678
01.10.2020 23:07
Центр окружностей, вписанных в угол, лежат на биссектрисе угла.  Обозначения: А-вершина угла, О1- центр большой окружности. В - точка касания большой окружности со стороной угла, О2-точка касания окружностей. О1В=О1О2=23 (радиус), Угол О1АВ=30 град, тогда угол АО1В =О2О1В=60 град Так как О2О1=О1В, сл-но О2В=23 (О2О1В-равносторонний треугольник - все углы 60град). Опустим перпендикуляр из точки касания к стороне угла. Получим  прямоугольный треугольник О2КВ, где О2В=23(гипотенуза), угол О2ВК=30град. Правило: катет, лежащий против угла в 30град = половине гипотенузы: О2К=23:2=11,5. ответ: 11,5
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота