Все зависит какое напряжение выдает блок питания. Бывают блоки питания с выходом постоянного напряжения, тогда Р = U*I где Р- мощность выдаваемая блоком питания, Вт U - постоянное напряжение выдаваемое блоком питания, В I - постоянный ток выдаваемый блоком питания, А P = 12*10 =120 Вт Вт = ватт Бывают блоки питания у которых на выходе переменной напряжение, тогда S = U*I где S- полная мощность выдаваемая блоком питания, В·А U - переменное напряжение выдаваемое блоком питания, В I - переменный ток выдаваемый блоком питания, А S = 12*10 =120 В·A
Ax^2 + 2(a+3)x + (a+4) = 0 Во-первых, при а = 0 квадратное уравнение вырождается в линейное 6x + 4 = 0; x = -2/3 - один корень, что нам не подходит. Во-вторых, при а не = 0 имеем D/4 = (a + 3)^2 - a(a + 4) = a^2 + 6a + 9 - a^2 - 4a = 2a + 9 При a < -9/2 будет D < 0, корней нет. Не подходит. При a = -9/2 будет D = 0, тогда будет 1 корень (точнее, 2 равных корня). x = -(a+3)/a = -(-9/2 + 3) / (-9/2) = (-3/2)*2/9 = -1/3. Не подходит. При a > -9/2 будет 2 разных корня
Нам нужно, чтобы расстояние между корнями было больше 2 |x1 - x2| > 2 Возможно 2 случая
1) x1 > x2, тогда |x1 - x2| = x1 - x2 x1 - x2 > 2
Делим все на (-2)
Корень арифметический, то есть неотрицательный. Поэтому, если a > 0, то и числитель и знаменатель > 0, решений нет. Если a ∈ (-9/2; 0) по области определения, то √(2a + 9) + a > 0 √(2a + 9) > -a 2a + 9 > a^2 a^2 - 2a - 9 < 0 (при этом мы помним, что a < 0) D = 4 + 4*9 = 40 a1 = (2 - √40)/2 = (2 - 2√10)/2 = 1 - √10 ∈ (-9/2; 0) - подходит a2 = (2 + √40).2 = 1 + √10 > 0 Решение неравенства a ∈ (1 - √10; 1 + √10) С учетом, что a ∈ (-9/2; 0) Решение: a ∈ (1 - √10; 0)
2) x2 > x1, тогда |x1 - x2| = x2 - x1
Делим все на 2
Если a ∈ (-9/2; 0) по области определения, то √(2a + 9) - a < 0 √(2a + 9) < a Так как корень арифметический, то √(2a + 9) > 0, а по условию a < 0 Поэтому это неравенство решений не имеет.
Если a > 0, то √(2a + 9) - a > 0 √(2a + 9) > a 2a + 9 > a^2 a^2 - 2a - 9 < 0 (при этом мы помним, что a > 0) a1 = 1 - √10 < 0 - не подходит a2 = 1 + √10 > 0 - подходит Решение неравенства: (1 - √10; 1 + √10) С учетом, что a > 0 Решение: a ∈ (0; 1 + √10)
Все зависит какое напряжение выдает блок питания.
Бывают блоки питания с выходом постоянного напряжения, тогда
Р = U*I
где Р- мощность выдаваемая блоком питания, Вт
U - постоянное напряжение выдаваемое блоком питания, В
I - постоянный ток выдаваемый блоком питания, А
P = 12*10 =120 Вт
Вт = ватт
Бывают блоки питания у которых на выходе переменной напряжение, тогда
S = U*I
где S- полная мощность выдаваемая блоком питания, В·А
U - переменное напряжение выдаваемое блоком питания, В
I - переменный ток выдаваемый блоком питания, А
S = 12*10 =120 В·A
Во-первых, при а = 0 квадратное уравнение вырождается в линейное
6x + 4 = 0; x = -2/3 - один корень, что нам не подходит.
Во-вторых, при а не = 0 имеем
D/4 = (a + 3)^2 - a(a + 4) = a^2 + 6a + 9 - a^2 - 4a = 2a + 9
При a < -9/2 будет D < 0, корней нет. Не подходит.
При a = -9/2 будет D = 0, тогда будет 1 корень (точнее, 2 равных корня).
x = -(a+3)/a = -(-9/2 + 3) / (-9/2) = (-3/2)*2/9 = -1/3. Не подходит.
При a > -9/2 будет 2 разных корня
Нам нужно, чтобы расстояние между корнями было больше 2
|x1 - x2| > 2
Возможно 2 случая
1) x1 > x2, тогда |x1 - x2| = x1 - x2
x1 - x2 > 2
Делим все на (-2)
Корень арифметический, то есть неотрицательный.
Поэтому, если a > 0, то и числитель и знаменатель > 0, решений нет.
Если a ∈ (-9/2; 0) по области определения, то
√(2a + 9) + a > 0
√(2a + 9) > -a
2a + 9 > a^2
a^2 - 2a - 9 < 0 (при этом мы помним, что a < 0)
D = 4 + 4*9 = 40
a1 = (2 - √40)/2 = (2 - 2√10)/2 = 1 - √10 ∈ (-9/2; 0) - подходит
a2 = (2 + √40).2 = 1 + √10 > 0
Решение неравенства a ∈ (1 - √10; 1 + √10)
С учетом, что a ∈ (-9/2; 0)
Решение: a ∈ (1 - √10; 0)
2) x2 > x1, тогда |x1 - x2| = x2 - x1
Делим все на 2
Если a ∈ (-9/2; 0) по области определения, то
√(2a + 9) - a < 0
√(2a + 9) < a
Так как корень арифметический, то √(2a + 9) > 0, а по условию a < 0
Поэтому это неравенство решений не имеет.
Если a > 0, то
√(2a + 9) - a > 0
√(2a + 9) > a
2a + 9 > a^2
a^2 - 2a - 9 < 0 (при этом мы помним, что a > 0)
a1 = 1 - √10 < 0 - не подходит
a2 = 1 + √10 > 0 - подходит
Решение неравенства: (1 - √10; 1 + √10)
С учетом, что a > 0
Решение: a ∈ (0; 1 + √10)
ответ: a ∈ (1 - √10; 0) U (0; 1 + √10)