Это этот вопрос? AB = BC = CD = AD = BM + MC = 4 + 9 = 13 - сторона квадрата => S (ABCD) = AB^2 = 13^2 = 169 AK = BM = CT = DP = 4 > KB = MC = TD = PA = 9 => S (KBM) = S (MCT) = S (TDP) = S (PAK) = 1\2 * AK * AP = 1\2 * 4 * 9 = 18 - площадь одного треугольника => S (KMTP) = S (ABCD) - 4*S (KBM) = 169 - 4*18 = 97 или другой вариант решения: треугольники KBM = MCT = TDP = PAK по двум сторонам и углу (90 град) между ними => KM = MT = TP = PK = V(KB^2 + BM^2) = V(9^2 + 4^2) = V97 - сторона внутреннего квадрата, а KMTP - квадрат, так как: L BKM + L BMK = 90 град. Треугольники равны => равны и их соответственные углы => L BKM = L CMT => L BKM + L CMT = 90 град => L KMT = 180 - (L BKM + L CMT) = 180 - 90 = 90 град. => S (KMTP) = KM^2 = (V97)^2 = 97
32 км/час
Пошаговое объяснение:
Задача на движение вдогонку.
Время движения машин 11°° - 8°° = 3 (часа)
Расстояние между ними за 3 часа стало 6 км.
Двигались они в одном направлении.
Применим формулу S=v*t и найдем скорость их удаления друг от друга
v = S/t = 6 км : 3 часа = 2км/час
С другой стороны скорость удаления равна разности скоростей
v = v₁ - v₂
Подставим известные значения (v = 2км/час; v₂= 30 км/час) и получим
2км/час = v₁ - 30км/час
v₁ = 32км/час
ответ
первая машина двигалась со скоростью 32 км/час
S (ABCD) = AB^2 = 13^2 = 169
AK = BM = CT = DP = 4 >
KB = MC = TD = PA = 9 =>
S (KBM) = S (MCT) = S (TDP) = S (PAK) = 1\2 * AK * AP = 1\2 * 4 * 9 = 18 - площадь одного треугольника =>
S (KMTP) = S (ABCD) - 4*S (KBM) = 169 - 4*18 = 97
или другой вариант решения:
треугольники KBM = MCT = TDP = PAK по двум сторонам и углу (90 град) между ними =>
KM = MT = TP = PK = V(KB^2 + BM^2) = V(9^2 + 4^2) = V97 - сторона внутреннего квадрата, а KMTP - квадрат, так как:
L BKM + L BMK = 90 град.
Треугольники равны => равны и их соответственные углы =>
L BKM = L CMT =>
L BKM + L CMT = 90 град =>
L KMT = 180 - (L BKM + L CMT) = 180 - 90 = 90 град. =>
S (KMTP) = KM^2 = (V97)^2 = 97