В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Katrun15
Katrun15
07.01.2022 11:34 •  Математика

Докажите, что для любого натурального m существует число фибоначчи fn (n ≥ 1), кратное m

Показать ответ
Ответ:
Наталья162345
Наталья162345
08.10.2020 07:50
Числа Фибоначчи – последовательность чисел, задаваемая рекуррентно: F(n + 2) = F(n + 1) + F(n), F(0) = 0, F(1) = 1.

Выпишем остатки первых m^2 + 2 чисел Фибоначчи, начиная с нулевого, при делении на m. Поскольку всего различных остатков при делении на m ровно m, то различных пар остатков не более m^2. Пар соседних остатков m^2 + 1, тогда по принципу Дирихле найдутся две пары соседних чисел Фибоначчи, которые дают соответственно равные остатки при делении на m. Так как по двум остаткам последовательность однозначно восстанавливается в обоих направлениях, последовательность остатков периодичная, и найдётся число Фибоначчи с номером, не превосходящим m^2 + 2, дающее такой же остаток при делении на m, что и F(0) = 0, оно будет делиться на m.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота