Стороны:
AB= \sqrt{(21-15)^2+(6-2)^2}= \sqrt{36+16}= \sqrt{52}= 2 \sqrt{13} \\ BC= \sqrt{(19-21)^2+(9-6)^2}= \sqrt{4+9}= \sqrt{13} \\ CD= \sqrt{(13-19)^2+(5-9)^2}= \sqrt{36+16}= \sqrt{52}= 2 \sqrt{13} \\ AD= \sqrt{(13-15)^2+(5-2)^2}= \sqrt{4+9}= \sqrt{13}
AB = CD и BC = AD ⇒ ABCD - параллелограмм
Диагонали:
AC= \sqrt{(19-15)^2+(9-2)^2}= \sqrt{16+49}= \sqrt{65} \\ BD= \sqrt{(13-21)^2+(5-6)^2}= \sqrt{64+1}= \sqrt{65}
AC = BD ⇒ ABCD - прямоугольник
Площадь:
S=2 \sqrt{13} *\sqrt{13} =2*13 = 26
Пошаговое объяснение:
сори , сайт изменяет знаки , но ели не понятно лови фото моего решения
Стороны:
AB= \sqrt{(21-15)^2+(6-2)^2}= \sqrt{36+16}= \sqrt{52}= 2 \sqrt{13} \\ BC= \sqrt{(19-21)^2+(9-6)^2}= \sqrt{4+9}= \sqrt{13} \\ CD= \sqrt{(13-19)^2+(5-9)^2}= \sqrt{36+16}= \sqrt{52}= 2 \sqrt{13} \\ AD= \sqrt{(13-15)^2+(5-2)^2}= \sqrt{4+9}= \sqrt{13}
AB = CD и BC = AD ⇒ ABCD - параллелограмм
Диагонали:
AC= \sqrt{(19-15)^2+(9-2)^2}= \sqrt{16+49}= \sqrt{65} \\ BD= \sqrt{(13-21)^2+(5-6)^2}= \sqrt{64+1}= \sqrt{65}
AC = BD ⇒ ABCD - прямоугольник
Площадь:
S=2 \sqrt{13} *\sqrt{13} =2*13 = 26
Пошаговое объяснение:
сори , сайт изменяет знаки , но ели не понятно лови фото моего решения