В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
tsvirko7891
tsvirko7891
16.12.2020 19:25 •  Математика

Доказать что остаток от деления простого числа на 30 является равным 1 или какому либо простому числу.

Показать ответ
Ответ:
milasuraeva
milasuraeva
06.07.2020 13:09
У простого числа нужно забрать такое число чтобы оно делилось на 30 то есть и на 3 и на 10 а тогда он должен забрать у него либо  его последнюю цифру либо выражение s+10k тк оно должно кончатся на ноль   где s-последняя цифра   тк s+10k<30  тк остаток не превышает делимое число то есть  k=0 k=1 или k=2 любое простое число нечетно поютому оканчивается на нечетную цифру   и не равную 5 иначе онг поделится на 5 то есть возможно s=1,3,7,9  тогда выпишем  все варианты возможных остатков  согласно  s+10k<30    1,11,21,3,13,23,7,17,27,9,19,29  из этих вариантов  только 3 оказались не простыми числами  21,9,27  но заметим что все эти числа деляться на 3 а тк наше число должно делится на 3 то если выходит что и остаток делится на 3 то выходит что и это число делится на 3  тк если число R делится на 3 то возврощая остаток на место x=R+3j=3*i+3*j=3(i+j) то есть делится на 3   но тогда это число не является простым тк делится на 3.тогда такие остатки не могут быть.Поскольку все остальные варианты просты или равны 1,то остаток либо простое число либо равен 1.В частности 31 при делении на 30 дает остаток 1.Что и требовалось доказать
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота