В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
maximpopov2001
maximpopov2001
17.06.2020 03:34 •  Математика

Доказать, что если кривая y=ax^2+bx+c дважды пересекает ось абсцисс, то углы между этой кривой и данной осью в точках их пересечения равны между собой. чему равны эти углы?

Показать ответ
Ответ:
nf781
nf781
24.07.2020 11:49
Вообще-то эти углы не будут равны.
Это же парабола. А она имеет ось симметрии, перпендикулярную оси абсцисс. Ну и так как угол между кривой и осью 0Х задаётся касательной к кривой в точке пересечения её с осью, то вспомним, что производная функции в точке равна тангенсу угла наклона касательной в этой точке. То есть угол наклона касательной определяется производной функции.
производная равна y'=2ax+b.
Точки пересечения оси абсцисс есть корни исходного квадратного уравнения
x1=(-b+SQRT(b^2-4ac))/2a; x2=(-b-SQRT(b^2-4ac))/2a;
подставим эти корни в производную и найдём тангенсы углов наклона касательных в этих точках: x1) 2a*(-b+SQRT(b^2-4ac))/2a+b=SQRT(b^2-4ac)
x2) 2a*(-b-SQRT(b^2-4ac))/2a+b=-SQRT(b^2-4ac)
сами углы будут равны q1=arctg(SQRT(b^2-4ac)) и q2=arctg(-SQRT(b^2-4ac))
Видно, что значение тангенса углов наклона различается только знаком. Так как тангенс нечётная функция, то tg(-x)=-tg(x), а значит и углы наклона касательной к данной функции в точках пересечения оси абсцисс будут различаться лишь знаком. то есть один угол будет q, а второй -q
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота