В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
yulyakarpenko3
yulyakarpenko3
24.01.2022 07:18 •  Математика

Доказать, что для всех натуральных n верно неравенство:


Доказать, что для всех натуральных n верно неравенство:

Показать ответ
Ответ:
cutyboylovep07y0r
cutyboylovep07y0r
15.10.2020 15:18

Пусть последовательность \{a_{n}\} такова, что для всех k\geq m выполнено неравенство \sqrt{2a_{k+1}}\leq a_{k. Тогда верно неравенство \sqrt{a_{1}^3+\sqrt{a_{2}^3+...+\sqrt{a_{n}^3}}}\leq \sqrt{a_{1}^3+\sqrt{a_{2}^3+...+\sqrt{2a_{m}^3}}}.  Это легко видеть, заменяя члены с использованием неравенства.

В нашем случае a_{n}=n^3, неравенство \sqrt{2(k+1)^3}\leq k^3 верно для всех натуральных k\geq 3. Значит, искомая сумма не превосходит \sqrt{1^3+\sqrt{2^3+\sqrt{2\times3^3}}}. Для n=1,\; n=2 очевидно.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота