Треугольник ABCABC является остроугольным, так как 62<42+5262<42+52. Отсюда следует, что основания высот находятся на сторонах, а не на их продолжениях. Опустим высоту AA1AA1, и пусть она делит отрезок BCBC на части длиной xx и yy. С одной стороны, x+y=5x+y=5. С другой стороны, ввиду теоремы Пифагора, применённой к треугольникам ACA1ACA1 и ABA1ABA1 с общей высотой, 62−x2=AA21=42−y262−x2=AA12=42−y2. Следовательно, x2−y2=20x2−y2=20, то есть x−y=20/5=4x−y=20/5=4, откуда x=9/2x=9/2 и y=1/2y=1/2. Последнее означает, что K=A1K=A1, то есть треугольник ABKABK прямоугольный, и центр описанной около него окружности является серединой гипотенузы ABAB.Теперь опустим высоту BB1BB1, и тем же методом найдём CB1=15/4CB1=15/4, B1A=9/4B1A=9/4. Из этого следует, что MB1=15/4−27/8=3/8MB1=15/4−27/8=3/8, что составляет 1/101/10 от CB1CB1. Точно так же, KBKB составляет 1/101/10 от CBCB. Из этого можно сделать вывод, что прямые KMKM и BB1BB1 параллельны, а потому треугольник AKMAKM также прямоугольный. И центр описанной около него окружности есть середина гипотенузы AKAK.Таким образом, dd есть длина средней линии треугольника ABKABK, откуда d=BK/2=1/4d=BK/2=1/4.
156-х+43=170
х=156+43-170
х=29
ОТВЕТ: х=9
3. 3) 4)
4. пусть х-задуманное число. составим уравнение:
(х+43)+77=258
х+43+77=258
х=258-43-77
х=138
138-число, которое задумал Петя
ОТВЕТ:138
5.(5с-8)/2=121/11
(5с-8)/2=11
5с-8=22
5с=30
с=6
ОТВЕТ:с=6
6. 821-(м+268)=349
821-м-286=349
м=821-286-349
м=186
ОТВЕТ: м=186
7. 8а+9х=60, при х=4
8а+9*4=60
8а+36=60
8а=24
а=3
ОТВЕТ: а=3
8.пусть х книг-взяли ученики.Составим уравнение:
125-х+3=116
х=125+3-116
х=12
12 книг-взяли ученики
ОТВЕТ:12 книг
9.456+(х-367)-225=898
456+х-367-225=898
х=898-456+367+225
х=1034
ОТВЕТ: х=1034