Путь от пункта А до места, где третья машина догнала первые две машины: Первая машина: Время - t час. Скорость - 50 км/ч Расстояние - 50t км
Вторая машина: Время - (t-1) час. Скорость - 60 км/ч Расстояние - 60 (t-1) км
Третья машина: Время - (t -2 ) час. Скорость - V км/ч Расстояние - V(t-2) Получается: S=50t = 60(t-1) = V(t-2)
50t=60(t-1) 50t = 60t-60 50t-60t=-60 -10t=-60 t= -60 : (-10) t=6 часов S= 50 *6 = 300 км - путь до места, где третья машина обогнала другие. Подставим значения в выражение S=V(t-2) : V(6-2)= 300 4V =300 V=300:4 V= 75 км/ч - скорость третьей машины. ответ: 75 км/ч.
a = b-5
НАЙТИ
a=? b=?
РЕШЕНИЕ
Приводим к общему знаменателю (и забываем о нём).
3*(a-3)*b = 3*a*(b+4) - b*(b+4)
3*a*b - 9*b = 3*a*b + 12*a - b² - 4*b
Упрощаем и делаем подстановку: a = b-5
b² - 5*b - 12*(b-5) = 0
Упростим
b² - 17*b + 60 = 0
Решаем квадратное уравнение.
Дискриминант - D = 49, √49 = 7 и находим корни - b₁ = 12, b₂ = 5
b = 12 и a = 12-5 = 7
ОТВЕТ Дробь 7/12
Проверим второй корень уравнения:
b = 5 и а = 0 или дробью a/b = 0.
Получили на 1/3 меньше исходного числа.
По условию задачи тоже почти подходит, но 0 - не дробь - не подходит.
Первая машина:
Время - t час.
Скорость - 50 км/ч
Расстояние - 50t км
Вторая машина:
Время - (t-1) час.
Скорость - 60 км/ч
Расстояние - 60 (t-1) км
Третья машина:
Время - (t -2 ) час.
Скорость - V км/ч
Расстояние - V(t-2)
Получается:
S=50t = 60(t-1) = V(t-2)
50t=60(t-1)
50t = 60t-60
50t-60t=-60
-10t=-60
t= -60 : (-10)
t=6 часов
S= 50 *6 = 300 км - путь до места, где третья машина обогнала другие.
Подставим значения в выражение S=V(t-2) :
V(6-2)= 300
4V =300
V=300:4
V= 75 км/ч - скорость третьей машины.
ответ: 75 км/ч.