В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
elizavetava
elizavetava
18.06.2020 04:06 •  Математика

Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону: u=u1*sin(wt+f) , где t – время в секундах, амплитуда u1= 2 в, частота w (омега) 120 градусов/с, фаза f= -30 градусов. датчик настроен так, что если напряжение в нём не ниже чем 1 в, загорается лампочка. какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть? я нашел решение, но оно не понятное, решите подробно, желательно скиньте фото с решением. 15 очков .

Показать ответ
Ответ:
пматмг
пматмг
10.05.2023 15:41

Математическое ожидание - сумма попарных произведений значений случайной величины на вероятности, с которыми эти величины достигаются.

То есть, если значение x_1 достигается с вероятностью p_1, значение x_2 - с вероятностью x_2, и так далее, значение x_n - с вероятностью x_n, то математическое ожидание:

M(x)=x_1p_1+x_2p_2+...+x_np_n=\sum\limits_{i=1}^{n}x_ip_i

Математическое ожидание показывает среднее или наиболее вероятное значение случайной величины. В единичном испытании математическое ожидание равно вероятности события.

Для вычисления мат.ожидания как ожидаемого числа вопросов используем формулу:

M(x)=pn, где p - вероятность осуществления некоторого события, n - число повторений.

В нашем случае, p - вероятность того, что очередной вопрос не из группы "спринт", n - число вопросов группы "спринт" (нас интересует сколько раз среди них встретится вопрос не группы "спринт").

Поскольку вопросов не из группы "спринт" 10+8=18, а общее число вопросов 30+10+8=48, то вероятность того, что очередной вопрос не из группы "спринт" равна:

p=\dfrac{18}{48}

Число вопросов группы "спринт": n=30

Тогда:

M(x)=\dfrac{18}{48}\cdot30 =11.25

Конечно, можно действовать по первой формуле.

Для этого рассмотрим возможные количества вопросов не из группы "спринт", которые могли оказаться в группе "спринт". Это количества: 0, 1, 2, ..., 17, 18.

Найдем вероятности осуществления этих возможностей. Так как общий смысл сохраняется во всех ситуациях, то рассмотрим нахождение вероятности в общем виде - найдем с какой вероятностью i вопросов не из группы "спринт" попадут в группу "спринт".

Число выбрать вопросы в группу "спринт" с учетом этого условия соответствует тому, что из 18 вопросов не группы "спринт" мы выберем некоторые i штук, а остальные (30-i) штук мы выберем из 30 вопросов группы "спринт". Итоговое число благоприятных комбинаций: C_{30}^{30-i}\cdot C_{18}^i=C_{30}^i\cdot C_{18}^i.

Общее число выбрать вопросы в группу "спринт" соответствует тому, что из всех 48 вопросов мы выберем некоторые 30 штук. Общее число комбинаций: C_{48}^{30}.

Тогда, ситуации, что в группе "спринт" окажется i вопросов не из группы "спринт", соответствует вероятность \dfrac{C_{30}^i\cdot C_{18}^i}{C_{48}^{30}}.

Запишем математическое ожидание как сумму попарных произведений значений на вероятность:

M(x)=\sum\limits_{i=0}^{18}\left(i\cdot \dfrac{C_{30}^i\cdot C_{18}^i}{C_{48}^{30}}\right)

Можно попробовать упростить эту формулу:

M(x)=\sum\limits_{i=0}^{18}\left(i\cdot \dfrac{\dfrac{30!}{i!\cdot(30-i)!} \cdot \dfrac{18!}{i!\cdot(18-i)!} }{\dfrac{48!}{30!\cdot18!} }\right)

M(x)=\sum\limits_{i=0}^{18} \dfrac{i\cdot(30!\cdot18!)^2}{ (i!)^2\cdot(30-i)!\cdot(18-i)!\cdot48!}

M(x)=\dfrac{(30!\cdot18!)^2}{48!} \cdot \sum\limits_{i=0}^{18} \dfrac{i}{ (i!)^2\cdot(30-i)!\cdot(18-i)!}

Далее нужно каким-либо досчитать эту величину. Вычисления дают полученный ранее результат:

M(x)=11.25

Учитывая контекст вопроса, а именно, что мат.ожидание соответствует числу вопросов, попавших в группу "спринт", запишем также округленное до целого числа значение мат.ожидания:

M(x)\approx11

ответ: M(x)=11.25\approx11


13. В mathleague три раунда: Sprint, Target и Team. В Sprint 30 заданий, в Team 10 заданий, в Target
0,0(0 оценок)
Ответ:
KOBPAHET
KOBPAHET
26.02.2021 22:59

Приведу редко используемый в этой ситуации в надежде. что кто-нибудь другой даст и  один из стандартных . MN=\sqrt{(7-0)^2+(2-1)^2}=\sqrt{50}=5\sqrt{2}.

Пусть K - точка касания одной из двух касательных с окружностью. Тогда KN=\sqrt{10} - ведь уравнение окружности x²+(y-1)^2=10,  центр у нее в точке N(0;1), а радиус равен корню из 10.

Далее, поскольку касательная перпендикулярна радиусу, проведенному в точку касания, угол MKN прямой, KM²=50-10=40,  а тангенс угла KMN равен \frac{\sqrt{10}}{2\sqrt{10}}=\frac{1}{2}.

Поэтому. чтобы получить касательную, нужно прямую MN с угловым коэффициентом (то есть тангенсом угла наклона)  1/7 повернуть вокруг точки M на угол  arctg(1/2) в ту или другую сторону. Поскольку

tg(\alpha\pm\beta)=\frac{tg\alpha\pm tg \beta}{1\mp tg\alpha\cdot tg \beta}, получаем угловые коэффициенты

k_1=\frac{\frac{1}{7}+\frac{1}{2}}{1-\frac{1}{7}\cdot \frac{1}{2}}=\frac{9}{13};\ k_2=\frac{\frac{1}{7}-\frac{1}{2}}{1+\frac{1}{7}\cdot \frac{1}{2}}=-\frac{5}{15}=-\frac{1}{3}.  

 Поэтому уравнения касательных -

y-2=\frac{9}{13}(x-7);\ 9x-13y-37=0 и

y-2=-\frac {1}{3}(x-7);\ x+3y-13=0.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота