Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Чтобы построить график функции f(x) = -x2/5 + 6x/5 - 1, мы можем начать с нахождения вершины параболы. Вершина расположена в точке x = -b/2a, где a и b - коэффициенты членов x2 и x соответственно. В этом случае a = -1/5 и b = 6/5, поэтому координата x вершины равна:
x = -b/2a = -(6/5) / (2*(-1/5)) = 3
Чтобы найти y-координату вершины, мы можем подставить x = 3 в уравнение для f(x):
f(3) = -(32)/5 + 6(3)/5 - 1 = 2
Таким образом, вершина расположена в точке (3, 2). Это минимальная точка параболы, поскольку коэффициент члена x2 отрицателен.
Теперь мы можем построить график функции. Мы можем начать с построения графика вершины в точке (3, 2):
.
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/\
0 1 2 3 4
Далее мы можем нанести на график еще несколько точек, чтобы получить представление о форме параболы. Мы можем выбрать некоторые значения x, которые равноудалены от вершины с обеих сторон. Например, мы могли бы использовать x = 1 и x = 5:
.
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/\
0 1 2 3 4 5
Чтобы завершить график, мы можем нарисовать плавную кривую через точки. Результирующий график должен выглядеть как обращенная вниз парабола, открывающаяся вверх, с вершиной в минимальной точке:
2|
|
| ..'' |
| ..'' |
| ..'' |
|.'' .
| .'
| .'
| .'
| .'
| .'
-1 __|__|__|__|__|__|__|__|__|__|__|
0 1 2 3 4 5 6 7 8 9
x
Таким образом, график функции f(x) = -x2/5 + 6x/5 - 1 представляет собой открывающуюся вниз параболу с вершиной в точке (3, 2).
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Чтобы построить график функции f(x) = -x2/5 + 6x/5 - 1, мы можем начать с нахождения вершины параболы. Вершина расположена в точке x = -b/2a, где a и b - коэффициенты членов x2 и x соответственно. В этом случае a = -1/5 и b = 6/5, поэтому координата x вершины равна:
x = -b/2a = -(6/5) / (2*(-1/5)) = 3
Чтобы найти y-координату вершины, мы можем подставить x = 3 в уравнение для f(x):
f(3) = -(32)/5 + 6(3)/5 - 1 = 2
Таким образом, вершина расположена в точке (3, 2). Это минимальная точка параболы, поскольку коэффициент члена x2 отрицателен.
Теперь мы можем построить график функции. Мы можем начать с построения графика вершины в точке (3, 2):
.
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/\
0 1 2 3 4
Далее мы можем нанести на график еще несколько точек, чтобы получить представление о форме параболы. Мы можем выбрать некоторые значения x, которые равноудалены от вершины с обеих сторон. Например, мы могли бы использовать x = 1 и x = 5:
.
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/\
0 1 2 3 4 5
Чтобы завершить график, мы можем нарисовать плавную кривую через точки. Результирующий график должен выглядеть как обращенная вниз парабола, открывающаяся вверх, с вершиной в минимальной точке:
2|
|
| ..'' |
| ..'' |
| ..'' |
|.'' .
| .'
| .'
| .'
| .'
| .'
-1 __|__|__|__|__|__|__|__|__|__|__|
0 1 2 3 4 5 6 7 8 9
x
Таким образом, график функции f(x) = -x2/5 + 6x/5 - 1 представляет собой открывающуюся вниз параболу с вершиной в точке (3, 2).
Пошаговое объяснение: