Функция f(x)=3x²-x³ 1. Область определения - нет ограничений D(f) = R. 2.Точки пересечения графика с осями координат. При х = 0, у = 0 точка пересечения с осью Оу. При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3. 3.Промежутки возрастания и убывания. Находим производную функции и приравниваем её 0: f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0. Нашли 2 критические точки: х = 0 и х = 2. Находим знаки производной вблизи критических точек: х = -0.5 0 1.5 2 2.5 у' =6x - 3x² = -3.75 0 2.25 0 -3.75 . Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает. x < 0 и x > 2 функция убывает, 0 < x < 2 функция возрастает.
4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум: х = 0 минимум, х = 2 максимум.
144°
Пошаговое объяснение:
Обозначим данную трапецию буквами ABCD
По свойству равнобедренной трапеции ∠A = ∠D, ∠B = ∠C (также AB = CD)
По рисунку ∠B и ∠C - большие углы, ∠A и ∠D - меньшие углы.
****************
.1) Пусть x° - ∠A и ∠C, тогда 4x° - ∠B и ∠D.
Сумма внутренних углов любого четырёхугольника равна 360°.
4x + 4x + x + x = 360
10x = 360
x = 360: 10
x = 36
36° - меньший угол
Тогда 36° · 4 = 144° - больший угол
2) Можно было ещё по другому составить уравнение:
Пусть x° - ∠A, тогда 4x° - ∠B.
∠A и ∠B - внутренние односторонние при пересечении BC || AD секущей AB
⇒ ∠A + ∠B = 180°
x + 4x = 180
5x = 180
x = 180 : 5
x = 36
36° - меньший угол
Тогда 36° · 4 = 144° - больший угол.
.Так как ∠B > ∠A в 4 раза по условию, значит отношение большего угла к меньшему равно 4 : 1
4 + 1 = 5 (частей) - всего.
5 частей = 180°, так как ∠A + ∠B = 180° из 2)
180° : 5 = 36° - ∠A, то есть меньший угол
36° · 4 = 144° - ∠B, то есть больший угол
1. Область определения - нет ограничений D(f) = R.
2.Точки пересечения графика с осями координат.
При х = 0, у = 0 точка пересечения с осью Оу.
При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3.
3.Промежутки возрастания и убывания.
Находим производную функции и приравниваем её 0:
f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0.
Нашли 2 критические точки:
х = 0 и х = 2.
Находим знаки производной вблизи критических точек:
х = -0.5 0 1.5 2 2.5
у' =6x - 3x² = -3.75 0 2.25 0 -3.75 .
Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает.
x < 0 и x > 2 функция убывает,
0 < x < 2 функция возрастает.
4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум:
х = 0 минимум, х = 2 максимум.