Дана правильная треугольная пирамида, стороны которой составляют угол 60 ° с плоскостью стопы. Если его высота 10√3 см, найдите размер пирамиды экзамен!
Разложим числа на простые множители и подчеркнем общие множители чисел:
17 = 17
49 = 7 · 7
150 = 2 · 3 · 5 · 5
Общие множители чисел: 1
НОД (17; 49; 150) = 1
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
150 = 2 · 3 · 5 · 5
17 = 17
49 = 7 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
1) При х1 = 1 и у1 =2 значение выражения (х+у)*2 = 6.
2) При х2 = -2 и у2 = -1 значение выражения (х+у)*2 = - 6.
Пошаговое объяснение:
1) Умножим левую и правую части уравнения
2/х - 2/у = 1 на ху:
2у - 2х = ху,
2 (у-х) = ху,
а так как (у-х) = 1, то в полученном выражении заменим (у-х) на 1, получаем:
2 * 1 = ху,
откуда х = 2/у.
2) Полученное выражение х через у подставим в уравнении (у-х)=1:
у - 2/у = 1;
умножаем левую и правую части этого уравнения на у:
у^2 - 2 = у,
у^2 - у - 2 = 0;
по теореме Виета находим корни
у1 = 2, у2 = -1.
3) Если у1 = 2, то
(2-х) = 1, откуда х1 = 1.
4) Если у2 = -1, то
(-1-х) = 1, откуда х2 = -2.
5) ПРОВЕРИМ найденные значения по первому уравнению:
а) 2/1-2/2= 1 - первая пара х и у подходит;
б) 2/(-2) -2/(-1) = -1 + 2 = 1 - вторая пара х и у также подходит;
5) Находим значение выражения (х+у)2:
а) при х1 = 1 и у1 = 2:
(х+у)*2 = (1+2)*2 = 6;
б) при х2 = -2 и у2 = -1:
(х+у)2 = (-2-1)*2 = - 6.
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
17 = 17
49 = 7 · 7
150 = 2 · 3 · 5 · 5
Общие множители чисел: 1
НОД (17; 49; 150) = 1
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
150 = 2 · 3 · 5 · 5
17 = 17
49 = 7 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (17; 49; 150) = 2 · 3 · 5 · 5 · 17 · 7 · 7 = 124950
Наибольший общий делитель НОД (17; 49; 150) = 1
Наименьшее общее кратное НОК (17; 49; 150) = 124950
Объяснение:
надеюсь