В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
богдана135
богдана135
17.06.2022 22:47 •  Математика

Дана функция y=f(x), где f(x)={4:x ,если x≤−1 . x^2,если−1 Найди f(−9)

Показать ответ
Ответ:
602158
602158
05.06.2022 19:40

Прямокутний трикутник — трикутник, один із кутів якого прямий. Прямокутний трикутник займає особливе місце в планіметрії, оскільки для нього існують прості співвідношення між сторонами і кутами.

Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються катетами, а третя сторона — гіпотенузою. Традиційно катети позначаються літерами a та b, а гіпотенуза — літерою c. За теоремою Піфагора можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За теоремою Піфагора квадрат гіпотенузи дорівнює сумі квадратів катетів.

{\displaystyle AB^{2}=AC^{2}+BC^{2}}{\displaystyle AB^{2}=AC^{2}+BC^{2}}

Звідси можна знайти інші сторони прямокутного трикутника.

{\displaystyle AC^{2}=AB^{2}-BC^{2}}{\displaystyle AC^{2}=AB^{2}-BC^{2}}

{\displaystyle BC^{2}=AB^{2}-AC^{2}}{\displaystyle BC^{2}=AB^{2}-AC^{2}}

Катети є водночас висотами прямокутного трикутника. Тому площа прямокутного трикутника дорівнює:

{\displaystyle S={\frac {1}{2}}ab}{\displaystyle S={\frac {1}{2}}ab}.

Зміст

1 Властивості прямокутних трикутників

2 Ознаки рівності прямокутних трикутників

3 Тригонометрія у прямому трикутнику

4 Вписане й описане коло прямокутного трикутника

4.1 Описане коло

4.2 Вписане коло

5 Теорема про висоту прямокутного трикутника

6 Джерела

7 Див. також

8 Примітки

9 Посилання

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
NaumovaAlina
NaumovaAlina
07.12.2022 19:57
Свойства степеней (с примерами)1-е свойство степени
Любое число отличное от нуля в нулевой степени равно единице.
a0=1, если a≠0
Например: 1120=1, (−4)0=1, (0,15)0=12-е свойство степени
Любое число в первой степени равно самому числу.
a1=a
Например: 231=23, (−9,3)1=−9,33-е свойство степени
Любое число в четной степени положительно.
an=an, если n - четное (делящееся на 2) целое число
(−a)n=an, если n - четное (делящееся на 2) целое число
Например: 24=16, (−3)2=32=9, (−1)10=110=14-е свойство степени
Любое число в нечетной степени сохраняет свой знак.
an=an, если n - нечетное (не делящееся на 2) целое число
(−a)n=−an, если n - нечетное (не делящееся на 2) целое число
Например: 53=125, (−3)3=−33=−27, (−1)11=−111=−15-е свойство степени
Произведение чисел, возведенное в степень, можно представить как произведение чисел возведенных в эту степень (и наоборот).
(a⋅b)n=an⋅bn, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (2,1⋅0,3)4,5=2,14,5⋅0,34,56-е свойство степени
Частное (деление) чисел, возведенное в степень, можно представить как частное чисел возведенных в эту степень (и наоборот).
(ab)n=anbn, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (1,75)0,1=(1,7)0,150,17-е свойство степени
Любое число в отрицательной степени равно обратному числу в этой степени. (Обратное число это число на которое нужно умножить данное число, чтобы получить единицу.)
a−n=1an, при этом a и n - любые допустимые (не обязательно целые) числа
Например: 7−2=172=1498-е свойство степени
Любая дробь в отрицательной степени равна обратной дроби в этой степени.
(ab)−n=(ba)n, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (23)−2=(32)2, (14)−3=(41)3=43=649-е свойство степени
При умножении степеней с одинаковым основанием показатели степени складываются, а основание остается прежним.
an⋅am=an+m,  при этом a, n, m - любые допустимые (не обязательно целые) числа
Например: 23⋅25=23+5=28, обратите внимание, что это свойство степени сохраняется и для отрицательных значений степеней 3−2⋅36=3−2+6=34, 47⋅4−3=47+(−3)=47−3=4410-е свойство степени
При делении степеней с одинаковым основанием показатели степени вычитаются, а основание остается прежним.
anam=an−m,  при этом a, n, m - любые допустимые (не обязательно целые) числа
Например: (1,4)2(1,4)3=1,42−3=1,4−1, обратите внимание, как применяется это свойство степени к отрицательным значения степеней3−236=3−2−6=3−8, 474−3=47−(−3)=47+3=41011-е свойство степени
При возведении степени в степень степени перемножаются.
(an)m=an⋅m
Например: (23)2=23⋅2=26=64
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота